In theories of quantum gravity, the graviton is the hypothetical quantum of gravity, an elementary particle that mediates the force of gravity. There is no complete quantum field theory of gravitons due to an outstanding mathematical problem with renormalization in general relativity. In string theory, believed to be a consistent theory of quantum gravity, the graviton is a massless state of a fundamental string.
If it exists, the graviton is expected to be massless because the gravitational force is very long range and appears to propagate at the speed of light. The graviton must be a spin-2 boson because the source of gravitation is the stress–energy tensor, a second-order tensor (compared with electromagnetism's spin-1 photon, the source of which is the four-current, a first-order tensor). Additionally, it can be shown that any massless spin-2 field would give rise to a force indistinguishable from gravitation, because a massless spin-2 field would couple to the stress–energy tensor in the same way that gravitational interactions do. This result suggests that, if a massless spin-2 particle is discovered, it must be the graviton.[5]
Theory
It is hypothesized that gravitational interactions are mediated by an as yet undiscovered elementary particle, dubbed the graviton. The three other known forces of nature are mediated by elementary particles: electromagnetism by the photon, the strong interaction by gluons, and the weak interaction by the W and Z bosons. All three of these forces appear to be accurately described by the standard model of particle physics. In the classical limit, a successful theory of gravitons would reduce to general relativity, which itself reduces to Newton's law of gravitation in the weak-field limit.[6][7][8]
The term graviton was originally coined in 1934 by Soviet physicists Dmitrii Blokhintsev and F.M. Gal'perin.[3]
Gravitons and renormalization
When describing graviton interactions, the classical theory of Feynman diagrams and semiclassical corrections such as one-loop diagrams behave normally. However, Feynman diagrams with at least two loops lead to ultraviolet divergences. These infinite results cannot be removed because quantized general relativity is not perturbatively renormalizable, unlike quantum electrodynamics and models such as the Yang–Mills theory. Therefore, incalculable answers are found from the perturbation method by which physicists calculate the probability of a particle to emit or absorb gravitons, and the theory loses predictive veracity. Those problems and the complementary approximation framework are grounds to show that a theory more unified than quantized general relativity is required to describe the behavior near the Planck scale.
Comparison with other forces
Like the force carriers of the other forces (see photon, gluon), gravitation plays a role in general relativity, in defining the spacetime in which events take place. In some descriptions energy modifies the "shape" of spacetime itself, and gravity is a result of this shape, an idea which at first glance may appear hard to match with the idea of a force acting between particles.[9] Because the diffeomorphism invariance of the theory does not allow any particular space-time background to be singled out as the "true" space-time background, general relativity is said to be background-independent. In contrast, the Standard Model is not background-independent, with Minkowski space enjoying a special status as the fixed background space-time.[10] A theory of quantum gravity is needed in order to reconcile these differences.[11] Whether this theory should be background-independent is an open question. The answer to this question will determine our understanding of what specific role gravitation plays in the fate of the universe.[12]
Gravitons in speculative theories
String theory predicts the existence of gravitons and their well-defined interactions. A graviton in perturbative string theory is a closed string in a very particular low-energy vibrational state. The scattering of gravitons in string theory can also be computed from the correlation functions in conformal field theory, as dictated by the AdS/CFT correspondence, or from matrix theory.
A feature of gravitons in string theory is that, as closed strings without endpoints, they would not be bound to branes and could move freely between them. If we live on a brane (as hypothesized by brane theories), this "leakage" of gravitons from the brane into higher-dimensional space could explain why gravitation is such a weak force, and gravitons from other branes adjacent to our own could provide a potential explanation for dark matter. However, if gravitons were to move completely freely between branes, this would dilute gravity too much, causing a violation of Newton's inverse-square law. To combat this, Lisa Randall found that a three-brane (such as ours) would have a gravitational pull of its own, preventing gravitons from drifting freely, possibly resulting in the diluted gravity we observe, while roughly maintaining Newton's inverse square law.[13] See brane cosmology.
A theory by Ahmed Farag Ali and Saurya Das adds quantum mechanical corrections (using Bohm trajectories) to general relativistic geodesics. If gravitons are given a small but non-zero mass, it could explain the cosmological constant without need for dark energy and solve the smallness problem.[14] The theory received an Honorable Mention in the 2014 Essay Competition of the Gravity Research Foundation for explaining the smallness of cosmological constant.[15] Also the theory received an Honorable Mention in the 2015 Essay Competition of the Gravity Research Foundation for naturally explaining the observed large-scale homogeneity and isotropy of the universe due to the proposed quantum corrections.[16]
Energy and wavelength
While gravitons are presumed to be massless, they would still carry energy, as does any other quantum particle. Photon energy and gluon energy are also carried by massless particles. It is unclear which variables might determine graviton energy, the amount of energy carried by a single graviton.
Alternatively, if gravitons are massive at all, the analysis of gravitational waves yielded a new upper bound on the mass of gravitons. The graviton's Compton wavelength is at least 1.6×1016 m, or about 1.6 light-years, corresponding to a graviton mass of no more than 7.7×10−23 eV/c2.[17] This relation between wavelength and mass-energy is calculated with the Planck–Einstein relation, the same formula that relates electromagnetic wavelength to photon energy. However, if gravitons are the quanta of gravitational waves, then the relation between wavelength and corresponding particle energy is fundamentally different for gravitons than for photons, since the Compton wavelength of the graviton is not equal to the gravitational-wave wavelength. Instead, the lower-bound graviton Compton wavelength is about 9×109 times greater than the gravitational wavelength for the GW170104 event, which was ~ 1,700 km. The report[17] did not elaborate on the source of this ratio. It is possible that gravitons are not the quanta of gravitational waves, or that the two phenomena are related in a different way.
Experimental observation
Unambiguous detection of individual gravitons, though not prohibited by any fundamental law, is impossible with any physically reasonable detector.[18] The reason is the extremely low cross section for the interaction of gravitons with matter. For example, a detector with the mass of Jupiter and 100% efficiency, placed in close orbit around a neutron star, would only be expected to observe one graviton every 10 years, even under the most favorable conditions. It would be impossible to discriminate these events from the background of neutrinos, since the dimensions of the required neutrino shield would ensure collapse into a black hole.[18]
LIGO and Virgo collaborations' observations have directly detected gravitational waves.[19][20][21] Others have postulated that graviton scattering yields gravitational waves as particle interactions yield coherent states.[22] Although these experiments cannot detect individual gravitons, they might provide information about certain properties of the graviton.[23] For example, if gravitational waves were observed to propagate slower than c (the speed of light in a vacuum), that would imply that the graviton has mass (however, gravitational waves must propagate slower than c in a region with non-zero mass density if they are to be detectable).[24] Recent observations of gravitational waves have put an upper bound of 1.2×10−22 eV/c2 on the graviton's mass.[19] Astronomical observations of the kinematics of galaxies, especially the galaxy rotation problem and modified Newtonian dynamics, might point toward gravitons having non-zero mass.[25][26]
Difficulties and outstanding issues
Most theories containing gravitons suffer from severe problems. Attempts to extend the Standard Model or other quantum field theories by adding gravitons run into serious theoretical difficulties at energies close to or above the Planck scale. This is because of infinities arising due to quantum effects; technically, gravitation is not renormalizable. Since classical general relativity and quantum mechanics seem to be incompatible at such energies, from a theoretical point of view, this situation is not tenable. One possible solution is to replace particles with strings. String theories are quantum theories of gravity in the sense that they reduce to classical general relativity plus field theory at low energies, but are fully quantum mechanical, contain a graviton, and are thought to be mathematically consistent.[27]
See also
Gravitational wave
Gravitino
Dual graviton
Gravitomagnetism
Massive gravity
Gravity
Multiverse
Planck mass
Static forces and virtual-particle exchange
References
G is used to avoid confusion with gluons (symbol g)
Rovelli, C. (2001). "Notes for a brief history of quantum gravity".arXiv:gr-qc/0006061.
Blokhintsev, D. I.; Gal'perin, F. M. (1934). "Гипотеза нейтрино и закон сохранения энергии" [Neutrino hypothesis and conservation of energy]. Pod Znamenem Marxisma (in Russian). 6: 147–157. ISBN 9785040089567.
Zyla, P.; et al. (Particle Data Group) (2020). "Review of Particle Physics: Gauge and Higgs bosons" (PDF).
For a comparison of the geometric derivation and the (non-geometric) spin-2 field derivation of general relativity, refer to box 18.1 (and also 17.2.5) of Misner, C. W.; Thorne, K. S.; Wheeler, J. A. (1973). Gravitation. W. H. Freeman. ISBN 0-7167-0344-0.
Feynman, R. P.; Morinigo, F. B.; Wagner, W. G.; Hatfield, B. (1995). Feynman Lectures on Gravitation. Addison-Wesley. ISBN 0-201-62734-5.
Zee, A. (2003). Quantum Field Theory in a Nutshell. Princeton University Press. ISBN 0-691-01019-6.
Randall, L. (2005). Warped Passages: Unraveling the Universe's Hidden Dimensions. Ecco Press. ISBN 0-06-053108-8.
See the other articles on General relativity, Gravitational field, Gravitational wave, etc
Colosi, D.; et al. (2005). "Background independence in a nutshell: The dynamics of a tetrahedron". Classical and Quantum Gravity. 22 (14): 2971–2989.arXiv:gr-qc/0408079. Bibcode:2005CQGra..22.2971C. doi:10.1088/0264-9381/22/14/008.
Witten, E. (1993). "Quantum Background Independence In String Theory".arXiv:hep-th/9306122.
Smolin, L. (2005). "The case for background independence".arXiv:hep-th/0507235.
Kaku, Michio (2006) Parallel Worlds – The science of alternative universes and our future in the Cosmos. Doubleday. pp. 218–221. ISBN 978-0385509862.
Ali, Ahmed Farag (2014). "Cosmology from quantum potential". Physics Letters B. 741: 276–279.arXiv:1404.3093. Bibcode:2015PhLB..741..276F. doi:10.1016/j.physletb.2014.12.057.
Das, Saurya (2014). "Cosmic coincidence or graviton mass?". International Journal of Modern Physics D. 23 (12): 1442017.arXiv:1405.4011. Bibcode:2014IJMPD..2342017D. doi:10.1142/S0218271814420176.
Das, Saurya (2015). "Bose–Einstein condensation as an alternative to inflation". International Journal of Modern Physics D. 24 (12): 1544001–219.arXiv:1509.02658. Bibcode:2015IJMPD..2444001D. doi:10.1142/S0218271815440010.
B. P. Abbott; et al. (LIGO Scientific Collaboration and Virgo Collaboration) (1 June 2017). "GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2". Physical Review Letters. 118 (22): 221101.arXiv:1706.01812. Bibcode:2017PhRvL.118v1101A. doi:10.1103/PhysRevLett.118.221101. PMID 28621973.
Rothman, T.; Boughn, S. (2006). "Can Gravitons be Detected?". Foundations of Physics. 36 (12): 1801–1825.arXiv:gr-qc/0601043. Bibcode:2006FoPh...36.1801R. doi:10.1007/s10701-006-9081-9. S2CID 14008778.
Abbott, B. P. et al. (LIGO Scientific Collaboration and Virgo Collaboration) (2016). "Observation of Gravitational Waves from a Binary Black Hole Merger". Physical Review Letters. 116 (6): 061102.arXiv:1602.03837. Bibcode:2016PhRvL.116f1102A. doi:10.1103/PhysRevLett.116.061102. PMID 26918975.
Castelvecchi, Davide; Witze, Witze (February 11, 2016). "Einstein's gravitational waves found at last". Nature News. doi:10.1038/nature.2016.19361. S2CID 182916902.
"Gravitational waves detected 100 years after Einstein's prediction | NSF - National Science Foundation". www.nsf.gov. Retrieved 2016-02-11.
Senatore, L.; Silverstein, E.; Zaldarriaga, M. (2014). "New sources of gravitational waves during inflation". Journal of Cosmology and Astroparticle Physics. 2014 (8): 016.arXiv:1109.0542. Bibcode:2014JCAP...08..016S. doi:10.1088/1475-7516/2014/08/016. S2CID 118619414.
Dyson, Freeman (8 October 2013). "Is a Graviton Detectable?". International Journal of Modern Physics A. 28 (25): 1330041–1–1330035–14. Bibcode:2013IJMPA..2830041D. doi:10.1142/S0217751X1330041X.
Will, C. M. (1998). "Bounding the mass of the graviton using gravitational-wave observations of inspiralling compact binaries" (PDF). Physical Review D. 57 (4): 2061–2068.arXiv:gr-qc/9709011. Bibcode:1998PhRvD..57.2061W. doi:10.1103/PhysRevD.57.2061. S2CID 41690760.
Trippe, Sascha (2012). "A Simplified Treatment of Gravitational Interaction on Galactic Scales". Journal of the Korean Astronomical Society. 46 (1): 41–47.arXiv:1211.4692. Bibcode:2013JKAS...46...41T. doi:10.5303/JKAS.2013.46.1.41.
Platscher, Moritz; Smirnov, Juri; Meyer, Sven; Bartelmann, Matthias (2018). "Long range effects in gravity theories with Vainshtein screening". Journal of Cosmology and Astroparticle Physics. 2018 (12): 009.arXiv:1809.05318. Bibcode:2018JCAP...12..009P. doi:10.1088/1475-7516/2018/12/009. S2CID 86859475.
Sokal, A. (July 22, 1996). "Don't Pull the String Yet on Superstring Theory". The New York Times. Retrieved March 26, 2010.
vte
Particles in physics
Elementary
Fermions
Quarks
Up (quark antiquark) Down (quark antiquark) Charm (quark antiquark) Strange (quark antiquark) Top (quark antiquark) Bottom (quark antiquark)
Leptons
Electron Positron Muon Antimuon Tau Antitau Electron neutrino Electron antineutrino Muon neutrino Muon antineutrino Tau neutrino Tau antineutrino
Bosons
Gauge
Scalar
Hypothetical
Superpartners
Gauginos
Others
Axino Chargino Higgsino Neutralino Sfermion (Stop squark)
Others
Axion Curvaton Dilaton Dual graviton Graviphoton Graviton Inflaton Leptoquark Magnetic monopole Majoron Majorana fermion Dark photon Planck particle Preon Sterile neutrino Tachyon W′ and Z′ bosons X and Y bosons
Composite
Hadrons
Baryons
Nucleon
Proton Antiproton Neutron Antineutron Delta baryon Lambda baryon Sigma baryon Xi baryon Omega baryon
Mesons
Pion Rho meson Eta and eta prime mesons Phi meson J/psi meson Omega meson Upsilon meson Kaon B meson D meson Quarkonium
Exotic hadrons
Others
Atomic nuclei Atoms Exotic atoms
Positronium Muonium Tauonium Onia Pionium Superatoms Molecules
Hypothetical
Baryons
Hexaquark Heptaquark Skyrmion
Mesons
Others
Mesonic molecule Pomeron Diquark R-hadron
Anyon Davydov soliton Dropleton Exciton Hole Magnon Phonon Plasmaron Plasmon Polariton Polaron Roton Trion
Lists
Baryons Mesons Particles Quasiparticles Timeline of particle discoveries
Related
History of subatomic physics
timeline Standard Model
mathematical formulation Subatomic particles Particles Antiparticles Nuclear physics Eightfold way
Quark model Exotic matter Massless particle Relativistic particle Virtual particle Wave–particle duality Particle chauvinism
Wikipedia books
Hadronic Matter Particles of the Standard Model Leptons Quarks
vte
Quantum gravity
Central concepts
AdS/CFT correspondence Ryu-Takayanagi Conjecture Causal patch Gravitational anomaly Graviton Holographic principle IR/UV mixing Planck scale Quantum foam Trans-Planckian problem Weinberg–Witten theorem Faddeev-Popov ghost
Toy models
2+1D topological gravity CGHS model Jackiw–Teitelboim gravity Liouville gravity RST model Topological quantum field theory
Quantum field theory in curved spacetime
Bunch–Davies vacuum Hawking radiation Semiclassical gravity Unruh effect
Black hole complementarity Black hole information paradox Black-hole thermodynamics Bousso's holographic bound ER=EPR Firewall (physics) Gravitational singularity
Approaches
String theory
Bosonic string theory M-theory Supergravity Superstring theory
Loop quantum gravity Wheeler–DeWitt equation
Euclidean quantum gravity
Others
Causal dynamical triangulation Causal sets Noncommutative geometry Spin foam Group field theory Superfluid vacuum theory Twistor theory Dual graviton
Applications
Quantum cosmology
Eternal inflation Multiverse FRW/CFT duality
vte
Theories of gravitation
Theories of gravitation
Standard
Newtonian gravity (NG)
Newton's law of universal gravitation Gauss's law for gravity Poisson's equation for gravity History of gravitational theory
General relativity (GR)
Introduction History Mathematics Exact solutions Resources Tests Post-Newtonian formalism Linearized gravity ADM formalism Gibbons–Hawking–York boundary term
Alternatives to
general relativity
Paradigms
Classical theories of gravitation Quantum gravity Theory of everything
Classical
Einstein–Cartan Bimetric theories Gauge theory gravity Teleparallelism Composite gravity f(R) gravity Infinite derivative gravity Massive gravity Modified Newtonian dynamics, MOND
AQUAL Tensor–vector–scalar Nonsymmetric gravitation Scalar–tensor theories
Brans–Dicke Scalar–tensor–vector Conformal gravity Scalar theories
Nordström Whitehead Geometrodynamics Induced gravity Chameleon Pressuron Degenerate Higher-Order Scalar-Tensor theories
Quantum-mechanical
Unified-field-theoric
Kaluza–Klein theory
Dilaton Supergravity
Unified-field-theoric and
quantum-mechanical
Noncommutative geometry Semiclassical gravity Superfluid vacuum theory
Logarithmic BEC vacuum String theory
M-theory F-theory Heterotic string theory Type I string theory Type 0 string theory Bosonic string theory Type II string theory Little string theory Twistor theory
Twistor string theory
Generalisations /
extensions of GR
Liouville gravity Lovelock theory (2+1)-dimensional topological gravity Gauss–Bonnet gravity Jackiw–Teitelboim gravity
Pre-Newtonian
theories and
toy models
Aristotelian physics CGHS model RST model Mechanical explanations
Fatio–Le Sage Entropic gravity Gravitational interaction of antimatter Physics in the medieval Islamic world Theory of impetus
Related topics
vte
String theory
Background
Strings History of string theory
First superstring revolution Second superstring revolution String theory landscape
Calabi-Yau-alternate
Theory
Nambu–Goto action Polyakov action Bosonic string theory Superstring theory
Type I string Type II string
Type IIA string Type IIB string Heterotic string N=2 superstring F-theory String field theory Matrix string theory Non-critical string theory Non-linear sigma model Tachyon condensation RNS formalism GS formalism
String duality
T-duality S-duality U-duality Montonen–Olive duality
Particles and fields
Graviton Dilaton Tachyon Ramond–Ramond field Kalb–Ramond field Magnetic monopole Dual graviton Dual photon
Branes
D-brane NS5-brane M2-brane M5-brane S-brane Black brane Black holes Black string Brane cosmology Quiver diagram Hanany–Witten transition
Conformal field theory
Virasoro algebra Mirror symmetry Conformal anomaly Conformal algebra Superconformal algebra Vertex operator algebra Loop algebra Kac–Moody algebra Wess–Zumino–Witten model
Gauge theory
Anomalies Instantons Chern–Simons form Bogomol'nyi–Prasad–Sommerfield bound Exceptional Lie groups (G2, F4, E6, E7, E8) ADE classification Dirac string p-form electrodynamics
Geometry
Kaluza–Klein theory Compactification Why 10 dimensions? Kähler manifold Ricci-flat manifold
Calabi–Yau manifold Hyperkähler manifold
K3 surface G2 manifold Spin(7)-manifold Generalized complex manifold Orbifold Conifold Orientifold Moduli space Hořava–Witten domain wall K-theory (physics) Twisted K-theory
Supergravity Superspace Lie superalgebra Lie supergroup
Holography
Holographic principle AdS/CFT correspondence
M-theory
Matrix theory Introduction to M-theory
String theorists
Aganagić Arkani-Hamed Atiyah Banks Berenstein Bousso Cleaver Curtright Dijkgraaf Distler Douglas Duff Ferrara Fischler Friedan Gates Gliozzi Gopakumar Green Greene Gross Gubser Gukov Guth Hanson Harvey Hořava Gibbons Kachru Kaku Kallosh Kaluza Kapustin Klebanov Knizhnik Kontsevich Klein Linde Maldacena Mandelstam Marolf Martinec Minwalla Moore Motl Mukhi Myers Nanopoulos Năstase Nekrasov Neveu Nielsen van Nieuwenhuizen Novikov Olive Ooguri Ovrut Polchinski Polyakov Rajaraman Ramond Randall Randjbar-Daemi Roček Rohm Scherk Schwarz Seiberg Sen Shenker Siegel Silverstein Sơn Staudacher Steinhardt Strominger Sundrum Susskind 't Hooft Townsend Trivedi Turok Vafa Veneziano Verlinde Verlinde Wess Witten Yau Yoneya Zamolodchikov Zamolodchikov Zaslow Zumino Zwiebach
Hellenica World - Scientific Library
Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License