- Art Gallery -

In quantum field theory in curved spacetime, there is a whole class of quantum states over a background de Sitter space which are invariant under all the isometries: the alpha-vacua. Among them there is a particular one whose associated Green functions verify a condition (Hadamard condition) consisting to behave on the light-cone as in flat space. This state is usually called the Bunch–Davies vacuum or Euclidean vacuum,[1] actually was first obtained by N.A. Chernikov and E. A. Tagirov, in 1968[2] and later by C. Schomblond and P. Spindel, in 1976, in the framework of a general discussion about invariant Green functions on de Sitter space.[3] The Bunch–Davies vacuum can also be described as being generated by an infinite time trace from the condition that the scale of quantum fluctuations is much smaller than the Hubble scale.[4] The state possesses no quanta at the asymptotic past infinity.[5]

The Bunch-Davies state is the zero-particle state as seen by a geodesic observer, that is, an observer who is in free fall in the expanding state.[6] The state explains the origin of cosmological perturbation fluctuations in inflationary models.
See also

Quantum field theory in curved spacetime
Unruh effect
Hawking radiation
Inflation (cosmology)

References

Bunch, Timothy Stephen; Davies, Paul (1978). "Quantum Field Theory In De Sitter Space: Renormalization By Point Splitting". Proceedings of the Royal Society of London. A. 360: 117. Bibcode:1978RSPSA.360..117B. doi:10.1098/rspa.1978.0060.
Chernikov, N.A.; Tagirov, E. A. (1968). "Quantum theory of scalar field in de Sitter space-time". Annales de l'Institut Henri Poincaré. A. IX, 2: 109.
Schomblond, Christiane; Spindel, Philippe (1976). "Conditions d'unicit e pour le propagateur Delta 1(x; y) du champ scalaire dans l'univers de de Sitter". Annales de l'Institut Henri Poincaré. A. XXV, 1: 67.
Danielsson, Ulf H; Olsson, Martin E (15 March 2004). "On thermalization in de Sitter space". Journal of High Energy Physics. 2004 (03): 036–036. arXiv:hep-th/0309163. Bibcode:2004JHEP...03..036D. doi:10.1088/1126-6708/2004/03/036.
Armendariz-Picon, C (26 February 2007). "Why should primordial perturbations be in a vacuum state?". Journal of Cosmology and Astroparticle Physics. 2007 (02): 031–031. arXiv:astro-ph/0612288. Bibcode:2007JCAP...02..031A. doi:10.1088/1475-7516/2007/02/031.

Greene, Brian R; Parikh, Maulik K; van der Schaar, Jan Pieter (28 April 2006). "Universal correction to the inflationary vacuum". Journal of High Energy Physics. 2006 (04): 057–057. arXiv:hep-th/0512243. Bibcode:2006JHEP...04..057G. doi:10.1088/1126-6708/2006/04/057.

Further reading

Greene, Brian R; Parikh, Maulik K; van der Schaar, Jan Pieter (28 April 2006). "Universal correction to the inflationary vacuum". Journal of High Energy Physics. 2006 (04): 057–057. arXiv:hep-th/0512243. Bibcode:2006JHEP...04..057G. doi:10.1088/1126-6708/2006/04/057.

vte

Quantum gravity
Central concepts

AdS/CFT correspondence Ryu-Takayanagi Conjecture Causal patch Gravitational anomaly Graviton Holographic principle IR/UV mixing Planck scale Quantum foam Trans-Planckian problem Weinberg–Witten theorem Faddeev-Popov ghost

Toy models

2+1D topological gravity CGHS model Jackiw–Teitelboim gravity Liouville gravity RST model Topological quantum field theory

Quantum field theory in curved spacetime

Bunch–Davies vacuum Hawking radiation Semiclassical gravity Unruh effect

Black holes

Black hole complementarity Black hole information paradox Black-hole thermodynamics Bousso's holographic bound ER=EPR Firewall (physics) Gravitational singularity

Approaches
String theory

Bosonic string theory M-theory Supergravity Superstring theory

Canonical quantum gravity

Loop quantum gravity Wheeler–DeWitt equation

Euclidean quantum gravity

Hartle–Hawking state

Others

Causal dynamical triangulation Causal sets Noncommutative geometry Spin foam Group field theory Superfluid vacuum theory Twistor theory Dual graviton

Applications

Quantum cosmology
Eternal inflation Multiverse FRW/CFT duality

Physics Encyclopedia

World

Index

Hellenica World - Scientific Library

Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License