- Art Gallery -

In theoretical physics, the dual photon is a hypothetical elementary particle that is a dual of the photon under electric–magnetic duality which is predicted by some theoretical models[3][4][5] and some results of M-theory in eleven dimensions.[1][2]

It has been shown that including magnetic monopole in Maxwell's equations introduces a singularity. The only way to avoid the singularity is including a second four-vector potential, called dual photon, in addition to the usual four-vector potential, photon.[6] Additionally, it was found that the standard Lagrangian of electromagnetism is not dual symmetric that causes dual-asymmetric problems of the energy–momentum, spin and orbital angular-momentum tensors. To resolve this issue, a dual-symmetric Lagrangian of electromagnetism has been proposed,[3] which has a self-consistent separation of the spin and orbital degrees of freedom. The Poincaré symmetries imply that the dual electromagnetism naturally makes self-consistent conservation laws.[3]

Dual electromagnetism

The free electromagnetic field is described by a covariant antisymmetric tensor \( {\displaystyle F_{\alpha \beta }} \) of rank 2 by

\( F_{\alpha \beta} \, = \, \partial_{\alpha} A_{\beta} \, - \, \partial_{\beta} A_{\alpha} \,. \)

where A\( A_{\alpha } is the electromagnetic potential.

The dual electromagnetic field \( {\displaystyle \star F_{\alpha \beta }} \) is defined as

\( {\displaystyle \star F_{\alpha \beta }={\frac {1}{2}}\epsilon _{\alpha \beta }{}^{\sigma \lambda }F_{\sigma \lambda }.} \)

where \( \star \) denotes the Hodge dual, and \( {\displaystyle \epsilon _{\mu \nu \sigma \lambda }} \) is the Levi-Civita tensor

For both the electromagnetic field and its dual field, we have

\( {\displaystyle \partial _{\alpha }F^{\alpha \beta }\,=\,0,} \)
\( {\displaystyle \partial _{\alpha }\star F^{\alpha \beta }\,=\,0.} \)

Then, for a given gauge field \( A_{\alpha } \), the dual configuration \( {\displaystyle \star A_{\alpha }} \) is defined as [2]

\( {\displaystyle \star F^{\alpha \beta }(A)\,=\,F^{\alpha \beta }(\star A),} \)
\( {\displaystyle \star F^{\alpha \beta }(\star A)\,=\,-F^{\alpha \beta }(A).} \)

where \( {\displaystyle \star A_{\alpha }} the field potential of the dual photon, and non-locally linked to the original field potential A α {\displaystyle A_{\alpha }} A_{\alpha }.
p-form electrodynamics

A p-form generalization of Maxwell's theory of electromagnetism is described by a gauge invariant 2-form\( \mathbf {F} \) defined as

\( {\mathbf {F}}=d{\mathbf {A}}. \)

which satisfies the equation of motion

\( {\displaystyle d\,{\star }\mathbf {F} =\star \mathbf {J} } \)

where \( \star \)is the Hodge star operator.

This implies the following action in the spacetime manifold M:[7][8]

\( {\displaystyle S=\int _{M}\left[{\frac {1}{2}}\mathbf {F} \wedge \star \mathbf {F} -\mathbf {A} \wedge \star \mathbf {J} \right]} \)

where \( {\displaystyle \star \mathbf {F} } \) is the dual of the gauge invariant 2-form \( \mathbf {F} \) for the electromagnetic field.
Dark photon
This artist's impression shows the dark photon A' decays into a pair of electron and positron.[9]

The dark photon is a spin-1 boson associated with a U(1) gauge field, which could be massless[10] and behaves like electromagnetism. But, it could be unstable and massive, quickly decays into electron-positron pairs, and interact with electrons.

The dark photon was first suggested in 2008 by Lotty Ackerman, Matthew R. Buckley, Sean M. Carroll, and Marc Kamionkowski to explain the 'g–2 anomaly' in experiment E821 at Brookhaven National Laboratory,.[11] Nevertheless, it was ruled out in some experiments such as the PHENIX detector at the Relativistic Heavy Ion Collider at Brookhaven.[12]

In 2015, the Hungarian Academy of Sciences's Institute for Nuclear Research in Debrecen, Hungary, suggested the existence of a new, light spin-1 boson, dubbed the X17 particle, 34 times heavier than the electron[13] that decays into a pair of electron and positron with a combined energy of 17 MeV. In 2016, it was proposed that it is an X-boson with a mass of 16.7 MeV that explains the g−2 muon anomaly.[13][14]
The standard and dual versions of electromagnetism.[3]
See also

Kalb–Ramond field
p-form electrodynamics
Dual graviton
Magnetic monopole – Hypothetical particle with one magnetic pole
't Hooft loop
Anomalous magnetic dipole moment – Quantum field-theoretic differences of magnetic properties than expected from classical theories
Photon – Elementary particle or quantum of light
Photino – Hypothetical superpartner of the photon
Electromagnetism – Branch of science concerned with the phenomena of electricity and magnetism
Electromagnetic mathematics – Formulations of electromagnetism
Covariant Maxwell's equations
Maxwell's equations – electromagnetism in general relativity
Dark photon – Hypothetical force carrier particle connected to dark matter
Dark radiation – A postulated type of radiation that mediates interactions of dark matter


Tong, D.; Lambert, N. (2008). "Membranes on an Orbifold". Physical Review Letters. 101 (4): 041602.arXiv:0804.1114. Bibcode:2008PhRvL.101d1602L. doi:10.1103/PhysRevLett.101.041602.
Bakas, I. (2010). "Dual photons and gravitons". Publ.Astron.Obs.Belgrade. 88: 113–132.arXiv:0910.1739. Bibcode:2010POBeo..88..113B.
Bliokh, K. Y.; Bekshaev, A. Y.; Nori, F. (2013). "Dual electromagnetism: helicity, spin, momentum and angular momentum". New Journal of Physics. 15 (3): 033026.arXiv:1208.4523. Bibcode:2013NJPh...15c3026B. doi:10.1088/1367-2630/15/3/033026.
Elbistan, M.; Duval, C.; Horváthy, P. A.; Zhang, P.-M. (2016). "Duality and helicity: A symplectic viewpoint". Physics Letters B. 761: 265–268.arXiv:1608.01131. Bibcode:2016PhLB..761..265E. doi:10.1016/j.physletb.2016.08.041.
Elbistan, M.; Horváthy, P. A.; Zhang, P.-M. (2017). "Duality and helicity: the photon wave function approach". Physics Letters A. 381 (30): 2375–2379.arXiv:1608.08573. Bibcode:2017PhLA..381.2375E. doi:10.1016/j.physleta.2017.05.042.
Singleton, D. (1996). "Electromagnetism with magnetic charge and two photons". American Journal of Physics. 64 (4): 452–458.arXiv:1106.1505. Bibcode:1996AmJPh..64..452S. doi:10.1119/1.18191.
Henneaux, M.; Teitelboim, C. (1986). "p-Form electrodynamics". Foundations of Physics. 16 (7): 593–617. Bibcode:1986FoPh...16..593H. doi:10.1007/BF01889624.
Henneaux, M.; Bunster, C. (2011). "Action for twisted self-duality". Physical Review D. 83 (12): 125015.arXiv:1103.3621. Bibcode:2011PhRvD..83l5015B. doi:10.1103/PhysRevD.83.125015.
"Viewpoint: New Light Shed on Dark Photons" (Press release). American Physical Society. 10 November 2014.
Carroll, Sean M. (October 29, 2008). "Dark photons". Retrieved 23 February 2015.
Bennett, G. W.; Bousquet, B.; Brown, H. N.; Bunce, G.; Carey, R. M.; Cushman, P.; Danby, G. T.; Debevec, P. T. (2006-04-07). "Final report of the E821 muon anomalous magnetic moment measurement at BNL". Physical Review D. 73 (7): 072003.arXiv:hep-ex/0602035. Bibcode:2006PhRvD..73g2003B. doi:10.1103/PhysRevD.73.072003.
Walsh, Karen McNulty (February 19, 2015). "Data from RHIC, other experiments nearly rule out role of 'dark photons' as explanation for 'g-2' anomaly". PhysOrg. Retrieved 23 February 2015.
Cartlidge, Edwin (2016). "Has a Hungarian physics lab found a fifth force of nature?". Nature. doi:10.1038/nature.2016.19957.

Feng, J. L.; Fornal, B.; Galon, I.; Gardner, S.; Smolinsky, J.; Tait, T. M. P.; Tanedo, P. (2016). "Protophobic Fifth-Force Interpretation of the Observed Anomaly in 8Be Nuclear Transitions". Physical Review Letters. 117 (7): 071803.arXiv:1604.07411. Bibcode:2016PhRvL.117g1803F. doi:10.1103/PhysRevLett.117.071803. PMID 27563952.


Particles in physics

Up (quark antiquark) Down (quark antiquark) Charm (quark antiquark) Strange (quark antiquark) Top (quark antiquark) Bottom (quark antiquark)


Electron Positron Muon Antimuon Tau Antitau Electron neutrino Electron antineutrino Muon neutrino Muon antineutrino Tau neutrino Tau antineutrino


Photon Gluon W and Z bosons


Higgs boson

Ghost fields

Faddeev–Popov ghosts


Gluino Gravitino Photino


Axino Chargino Higgsino Neutralino Sfermion (Stop squark)


Axion Curvaton Dilaton Dual graviton Graviphoton Graviton Inflaton Leptoquark Magnetic monopole Majoron Majorana fermion Dark photon Planck particle Preon Sterile neutrino Tachyon W′ and Z′ bosons X and Y bosons


Proton Antiproton Neutron Antineutron Delta baryon Lambda baryon Sigma baryon Xi baryon Omega baryon


Pion Rho meson Eta and eta prime mesons Phi meson J/psi meson Omega meson Upsilon meson Kaon B meson D meson Quarkonium

Exotic hadrons

Tetraquark Pentaquark


Atomic nuclei Atoms Exotic atoms
Positronium Muonium Tauonium Onia Pionium Superatoms Molecules


Hexaquark Heptaquark Skyrmion


Glueball Theta meson T meson


Mesonic molecule Pomeron Diquark R-hadron


Anyon Davydov soliton Dropleton Exciton Hole Magnon Phonon Plasmaron Plasmon Polariton Polaron Roton Trion


Baryons Mesons Particles Quasiparticles Timeline of particle discoveries


History of subatomic physics
timeline Standard Model
mathematical formulation Subatomic particles Particles Antiparticles Nuclear physics Eightfold way
Quark model Exotic matter Massless particle Relativistic particle Virtual particle Wave–particle duality Particle chauvinism

Wikipedia books

Hadronic Matter Particles of the Standard Model Leptons Quarks

Portal Physics portal


Quantum electrodynamics

Anomalous magnetic dipole moment Probability amplitude Propagator QED vacuum Self-energy Vacuum polarization ξ gauge


Feynman diagram Feynman slash notation Gupta–Bleuler formalism Path integral formulation Vertex function Ward–Takahashi identity


Bhabha scattering Bremsstrahlung Compton scattering Lamb shift Møller scattering


Dual photon Electron Photon Positron Positronium Virtual particles

See also: Template Template:Quantum mechanics topics


String theory

Strings History of string theory
First superstring revolution Second superstring revolution String theory landscape



Nambu–Goto action Polyakov action Bosonic string theory Superstring theory
Type I string Type II string
Type IIA string Type IIB string Heterotic string N=2 superstring F-theory String field theory Matrix string theory Non-critical string theory Non-linear sigma model Tachyon condensation RNS formalism GS formalism

String duality

T-duality S-duality U-duality Montonen–Olive duality

Particles and fields

Graviton Dilaton Tachyon Ramond–Ramond field Kalb–Ramond field Magnetic monopole Dual graviton Dual photon


D-brane NS5-brane M2-brane M5-brane S-brane Black brane Black holes Black string Brane cosmology Quiver diagram Hanany–Witten transition

Conformal field theory

Virasoro algebra Mirror symmetry Conformal anomaly Conformal algebra Superconformal algebra Vertex operator algebra Loop algebra Kac–Moody algebra Wess–Zumino–Witten model

Gauge theory

Anomalies Instantons Chern–Simons form Bogomol'nyi–Prasad–Sommerfield bound Exceptional Lie groups (G2, F4, E6, E7, E8) ADE classification Dirac string p-form electrodynamics


Kaluza–Klein theory Compactification Why 10 dimensions? Kähler manifold Ricci-flat manifold
Calabi–Yau manifold Hyperkähler manifold
K3 surface G2 manifold Spin(7)-manifold Generalized complex manifold Orbifold Conifold Orientifold Moduli space Hořava–Witten domain wall K-theory (physics) Twisted K-theory


Supergravity Superspace Lie superalgebra Lie supergroup


Holographic principle AdS/CFT correspondence


Matrix theory Introduction to M-theory

String theorists

Aganagić Arkani-Hamed Atiyah Banks Berenstein Bousso Cleaver Curtright Dijkgraaf Distler Douglas Duff Ferrara Fischler Friedan Gates Gliozzi Gopakumar Green Greene Gross Gubser Gukov Guth Hanson Harvey Hořava Gibbons Kachru Kaku Kallosh Kaluza Kapustin Klebanov Knizhnik Kontsevich Klein Linde Maldacena Mandelstam Marolf Martinec Minwalla Moore Motl Mukhi Myers Nanopoulos Năstase Nekrasov Neveu Nielsen van Nieuwenhuizen Novikov Olive Ooguri Ovrut Polchinski Polyakov Rajaraman Ramond Randall Randjbar-Daemi Roček Rohm Scherk Schwarz Seiberg Sen Shenker Siegel Silverstein Sơn Staudacher Steinhardt Strominger Sundrum Susskind 't Hooft Townsend Trivedi Turok Vafa Veneziano Verlinde Verlinde Wess Witten Yau Yoneya Zamolodchikov Zamolodchikov Zaslow Zumino Zwiebach

Physics Encyclopedia



Hellenica World - Scientific Library

Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License