The Delta baryons (or Δ baryons, also called Delta resonances) are a family of subatomic particle made of three up or down quarks (u or d quarks).
Four closely related Δ baryons exist: Δ++ (constituent quarks: uuu), Δ+ (uud), Δ0 (udd), and Δ− (ddd), which respectively carry an electric charge of +2 e, +1 e, 0 e, and −1 e. The Δ baryons have a mass of about 1232 MeV/c2, a spin of 3⁄2, and an isospin of 3⁄2. Ordinary protons and neutrons (nucleons (symbol N)), by contrast, have a mass of about 939 MeV/c2, a spin of 1⁄2, and an isospin of 1⁄2. The Δ+ (uud) and Δ0 (udd) particles are higher-mass excitations of the proton (N+ , uud) and neutron ( N0, udd), respectively. However, the Δ++ and Δ−
have no direct nucleon analogues.
The states were established experimentally at the University of Chicago cyclotron[1][2] and the Carnegie Institute of Technology synchro-cyclotron[3] in the mid-1950s using accelerated positive pions on hydrogen targets. The existence of the Δ++ , with its unusual +2 charge, was a crucial clue in the development of the quark model.
The Delta states discussed here are only the lowest-mass quantum excitations of the proton and neutron. At higher masses, additional Delta states appear, all defined by having 3⁄2 units of isospin, but with a spin quantum numbers including 1⁄2, 3⁄2, 5⁄2, ... 11⁄2. A complete listing of all properties of all these states can be found in Beringer et al. (2013).[4]
There also exist antiparticle Delta states with opposite charges, made up of the corresponding antiquarks.
Formation and decay
The Delta states are created when an energetic-enough probe such as a photon, electron, neutrino or pion impinges upon a proton or neutron, or possibly by the collision of an energetic-enough nucleon pair.
All of the Δ baryons with mass near 1232 MeV quickly decay via the strong force into a nucleon (proton or neutron) and a pion of appropriate charge. The relative probabilities of allowed final charge states are given by their respective isospin couplings. More rarely and more slowly, the Δ+ can decay into a proton and a photon and the Δ0 can decay into a neutron and a photon.
List
Particle name |
Symbol | Quark content |
Mass (MeV/c2) |
I−3 | JP | Q (e) |
S | C | B′ | T | Mean lifetime (s) |
Commonly decays to |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Delta[4] | Δ++ (1232) |
u u u |
1232±2 | +3⁄2 | 3⁄2+ | +2 | 0 | 0 | 0 | 0 | (5.63±0.14)×10−24[a] | p+ + π+ |
Delta[4] | Δ+ (1232) |
u u d |
1232±2 | +1⁄2 | 3⁄2+ | +1 | 0 | 0 | 0 | 0 | (5.63±0.14)×10−24[a] | π+ + n0 , or π0 + p+ |
Delta[4] | Δ0 (1232) |
u d d |
1232±2 | −1⁄2 | 3⁄2+ | 0 | 0 | 0 | 0 | 0 | (5.63±0.14)×10−24[a] | π0 + n0 , or π− + p+ |
Delta[4] | Δ− (1232) |
d d d |
1232±2 | −3⁄2 | 3⁄2+ | −1 | 0 | 0 | 0 | 0 | (5.63±0.14)×10−24[a] | π− + n0 |
[a] ^ PDG reports the resonance width (Γ). Here the conversion \( {\textstyle \tau ={\frac {\hbar }{\Gamma }}} \) is given instead.
References
Anderson, H. L.; Fermi, E.; Long, E. A.; Nagle, D. E. (1 March 1952). "Total Cross Sections of Positive Pions in Hydrogen". Physical Review. 85 (5): 936. Bibcode:1952PhRv...85..936A. doi:10.1103/PhysRev.85.936.
Hahn, T. M.; Snyder, C. W.; Willard, H. B.; Bair, J. K.; Klema, E. D.; Kington, J. D.; Green, F. P. (1 March 1952). "Neutrons and Gamma-Rays from the Proton Bombardment of Beryllium". Physical Review. 85 (5): 934. Bibcode:1952PhRv...85..934H. doi:10.1103/PhysRev.85.934.
Ashkin, J.; Blaser, J. P.; Feiner, F.; Stern, M. O. (1 February 1956). "Pion-Proton Scattering at 150 and 170 Mev". Physical Review. 101 (3): 1149–1158. Bibcode:1956PhRv..101.1149A. doi:10.1103/PhysRev.101.1149. hdl:2027/mdp.39015095214600.
J. Beringer et al. (2013): Particle listings –
Δ
(1232)
Bibliography
C. Amsler et al. (Particle Data Group) (2008). "Review of Particle Physics" (PDF). Physics Letters B. 667 (1): 1–6. Bibcode:2008PhLB..667....1A. doi:10.1016/j.physletb.2008.07.018.
vte
Particles in physics
Elementary
Fermions
Quarks
Up (quark antiquark) Down (quark antiquark) Charm (quark antiquark) Strange (quark antiquark) Top (quark antiquark) Bottom (quark antiquark)
Leptons
Electron Positron Muon Antimuon Tau Antitau Electron neutrino Electron antineutrino Muon neutrino Muon antineutrino Tau neutrino Tau antineutrino
Bosons
Gauge
Scalar
Hypothetical
Superpartners
Gauginos
Others
Axino Chargino Higgsino Neutralino Sfermion (Stop squark)
Others
Axion Curvaton Dilaton Dual graviton Graviphoton Graviton Inflaton Leptoquark Magnetic monopole Majoron Majorana fermion Dark photon Planck particle Preon Sterile neutrino Tachyon W′ and Z′ bosons X and Y bosons
Composite
Hadrons
Baryons
Nucleon
Proton Antiproton Neutron Antineutron Delta baryon Lambda baryon Sigma baryon Xi baryon Omega baryon
Mesons
Pion Rho meson Eta and eta prime mesons Phi meson J/psi meson Omega meson Upsilon meson Kaon B meson D meson Quarkonium
Exotic hadrons
Others
Atomic nuclei Atoms Exotic atoms
Positronium Muonium Tauonium Onia Pionium Superatoms Molecules
Hypothetical
Baryons
Hexaquark Heptaquark Skyrmion
Mesons
Others
Mesonic molecule Pomeron Diquark R-hadron
Anyon Davydov soliton Dropleton Exciton Hole Magnon Phonon Plasmaron Plasmon Polariton Polaron Roton Trion
Lists
Baryons Mesons Particles Quasiparticles Timeline of particle discoveries
Related
History of subatomic physics
timeline Standard Model
mathematical formulation Subatomic particles Particles Antiparticles Nuclear physics Eightfold way
Quark model Exotic matter Massless particle Relativistic particle Virtual particle Wave–particle duality Particle chauvinism
Wikipedia books
Hadronic Matter Particles of the Standard Model Leptons Quarks
Hellenica World - Scientific Library
Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License