In supersymmetry, the neutralino[1]:71–74 is a hypothetical particle. In the Minimal Supersymmetric Standard Model (MSSM), a popular model of realization of supersymmetry at a low energy, there are four neutralinos that are fermions and are electrically neutral, the lightest of which is stable in an R-parity conserved scenario of MSSM. They are typically labeled N͂01 (the lightest),N͂02,N͂03 an dN͂04 (the heaviest) although sometimes \( {\tilde {\chi }}_{1}^{0},\ldots ,{\tilde {\chi }}_{4}^{0}\) is also used when\( {\tilde {\chi }}_{i}^{\pm } \) is used to refer to charginos.
These four states are composites of the bino and the neutral wino (which are the neutral electroweak gauginos), and the neutral higgsinos. As the neutralinos are Majorana fermions, each of them is identical to its antiparticle. Because these particles only interact with the weak vector bosons, they are not directly produced at hadron colliders in copious numbers. They would primarily appear as particles in cascade decays of heavier particles (decays that happen in multiple steps) usually originating from colored supersymmetric particles such as squarks or gluinos.
In R-parity conserving models, the lightest neutralino is stable and all supersymmetric cascade-decays end up decaying into this particle which leaves the detector unseen and its existence can only be inferred by looking for unbalanced momentum in a detector.
The heavier neutralinos typically decay through a neutral Z boson to a lighter neutralino or through a charged W boson to a light chargino:[2]
N͂0 2 → N͂0 1 + Z0 → Missing energy + ℓ+ + ℓ−
N͂0 2 → C \( {\tilde {\chi }} \)± 1 + W∓ → N͂0 1 + W± + W∓ → Missing energy + ℓ+ + ℓ−
The mass splittings between the different neutralinos will dictate which patterns of decays are allowed.
Up to present, neutralinos have never been observed or detected in an experiment.
Origins in supersymmetric theories
In supersymmetry models, all Standard Model particles have partner particles with the same quantum numbers except for the quantum number spin, which differs by 1⁄2 from its partner particle. Since the superpartners of the Z boson (zino), the photon (photino) and the neutral higgs (higgsino) have the same quantum numbers, they can mix to form four eigenstates of the mass operator called "neutralinos". In many models the lightest of the four neutralinos turns out to be the lightest supersymmetric particle (LSP), though other particles may also take on this role.
Phenomenology
The exact properties of each neutralino will depend on the details of the mixing[1]:71–74 (e.g. whether they are more higgsino-like or gaugino-like), but they tend to have masses at the weak scale (100 GeV ~ 1 TeV) and couple to other particles with strengths characteristic of the weak interaction. In this way, except for mass, they are phenomenologically similar to neutrinos, and so are not directly observable in particle detectors at accelerators.
In models in which R-parity is conserved and the lightest of the four neutralinos is the LSP, the lightest neutralino is stable and is eventually produced in the decay chain of all other superpartners.[1]:83 In such cases supersymmetric processes at accelerators are characterized by the expectation of a large discrepancy in energy and momentum between the visible initial and final state particles, with this energy being carried off by a neutralino which departs the detector unnoticed.[4][6] This is an important signature to discriminate supersymmetry from Standard Model backgrounds.
Relationship to dark matter
As a heavy, stable particle, the lightest neutralino is an excellent candidate to form the universe's cold dark matter.[1]:99[5]:8[7] In many models[which?] the lightest neutralino can be produced thermally in the hot early universe and leave approximately the right relic abundance to account for the observed dark matter. A lightest neutralino of roughly 10–10000 GeV is the leading weakly interacting massive particle (WIMP) dark matter candidate.[1]:124
Neutralino dark matter could be observed experimentally in nature either indirectly or directly. For indirect observation, gamma ray and neutrino telescopes look for evidence of neutralino annihilation in regions of high dark matter density such as the galactic or solar centre.[4] For direct observation, special purpose experiments such as the Cryogenic Dark Matter Search (CDMS) seek to detect the rare impacts of WIMPs in terrestrial detectors. These experiments have begun to probe interesting supersymmetric parameter space, excluding some models for neutralino dark matter, and upgraded experiments with greater sensitivity are under development.
See also
Lightest Supersymmetric Particle
Truly neutral particle
References
Martin, Stephen P. (2008). "A Supersymmetry Primer".arXiv:hep-ph/9709356v5. Also published in Kane (2010).[3]
Nakamura, K.; et al. (Particle Data Group) (2010). Updated August 2009 by J.-F. Grivaz. "Supersymmetry, Part II (Experiment)" (PDF). Journal of Physics G. 37 (7): 1309–1319.
Martin, Stephen P. (2010). "Chapter 1: A Supersymmetry Primer". In Kane, Gordon L. (ed.). Perspectives on Supersymmetry. II. World Scientific. ISBN 978-981-4307-48-2.
Feng, Jonathan L. (2010). "Dark Matter Candidates from Particle Physics and Methods of Detection". Annual Review of Astronomy and Astrophysics. 48: 495–545.arXiv:1003.0904. Bibcode:2010ARA&A..48..495F. doi:10.1146/annurev-astro-082708-101659.
Bertone, Gianfranco, ed. (2010). Particle Dark Matter: Observations, Models and Searches. Cambridge University Press. ISBN 978-0-521-76368-4.
Ellis, John; Olive, Keith A. (2010). Supersymmetric Dark Matter Candidates.arXiv:1001.3651. Bibcode:2010pdmo.book..142E. Also published as Chapter 8 in Bertone (2010)[5]
Nakamura, K.; et al. (Particle Data Group) (2010). Revised September 2009 by M. Drees & G. Gerbier. "Dark Matter" (PDF). Journal of Physics G. 37 (7A): 255–260.
vte
Particles in physics
Elementary
Fermions
Quarks
Up (quark antiquark) Down (quark antiquark) Charm (quark antiquark) Strange (quark antiquark) Top (quark antiquark) Bottom (quark antiquark)
Leptons
Electron Positron Muon Antimuon Tau Antitau Electron neutrino Electron antineutrino Muon neutrino Muon antineutrino Tau neutrino Tau antineutrino
Bosons
Gauge
Scalar
Hypothetical
Superpartners
Gauginos
Others
Axino Chargino Higgsino Neutralino Sfermion (Stop squark)
Others
Axion Curvaton Dilaton Dual graviton Graviphoton Graviton Inflaton Leptoquark Magnetic monopole Majoron Majorana fermion Dark photon Planck particle Preon Sterile neutrino Tachyon W′ and Z′ bosons X and Y bosons
Nucleon
Proton Antiproton Neutron Antineutron Delta baryon Lambda baryon Sigma baryon Xi baryon Omega baryon
Mesons
Pion Rho meson Eta and eta prime mesons Phi meson J/psi meson Omega meson Upsilon meson Kaon B meson D meson Quarkonium
Exotic hadrons
Others
Atomic nuclei Atoms Exotic atoms
Positronium Muonium Tauonium Onia Pionium Superatoms Molecules
Hypothetical
Baryons
Hexaquark Heptaquark Skyrmion
Mesons
Others
Mesonic molecule Pomeron Diquark R-hadron
Anyon Davydov soliton Dropleton Exciton Hole Magnon Phonon Plasmaron Plasmon Polariton Polaron Roton Trion
Lists
Baryons Mesons Particles Quasiparticles Timeline of particle discoveries
Related
History of subatomic physics
timeline Standard Model
mathematical formulation Subatomic particles Particles Antiparticles Nuclear physics Eightfold way
Quark model Exotic matter Massless particle Relativistic particle Virtual particle Wave–particle duality Particle chauvinism
Wikipedia books
Hadronic Matter Particles of the Standard Model Leptons Quarks
vte
Dark matter
Dark matter
Forms of
dark matter
Baryonic dark matter Cold dark matter Hot dark matter Light dark matter Mixed dark matter Warm dark matter Self-interacting dark matter Scalar field dark matter Primordial black holes
Hypothetical particles
Axino Axion Dark photon Holeum LSP Minicharged particle Neutralino Sterile neutrino SIMP WIMP
Theories
and objects
Cuspy halo problem Dark fluid Dark galaxy Dark globular cluster Dark matter halo Dark radiation Dark star Dwarf galaxy problem Halo mass function Mass dimension one fermions Massive compact halo object Mirror matter Navarro–Frenk–White profile Scalar field dark matter
Search
experiments
Direct
detection
ADMX ANAIS ArDM CDEX CDMS CLEAN CoGeNT COSINE COUPP CRESST CUORE D3 DAMA/LIBRA DAMA/NaI DAMIC DarkSide DARWIN DEAP DM-Ice DMTPC DRIFT EDELWEISS EURECA KIMS LUX LZ MACRO MIMAC NAIAD NEWAGE NEWS-G PandaX PICASSO PICO ROSEBUD SABRE SIMPLE TREX-DM UKDMC WARP XENON XMASS ZEPLIN
Indirect
detection
AMS-02 ANTARES ATIC CALET CAST DAMPE Fermi HAWC HESS IceCube MAGIC MOA OGLE PAMELA VERITAS
Other projects
Potential dark galaxies
HE0450-2958 HVC 127-41-330 Smith's Cloud VIRGOHI21
Related
Antimatter Dark energy Exotic matter Galaxy formation and evolution Illustris project Imaginary mass Negative mass UniverseMachine
Hellenica World - Scientific Library
Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License