- Art Gallery -

In particle physics, majorons (named after Ettore Majorana) are a hypothetical type of Goldstone boson that are theorized to mediate the neutrino mass violation of lepton number or B − L in certain high energy collisions such as

e− + e− → W− + W− + J

Where two electrons collide to form two W bosons and the majoron J. The U(1)B–L symmetry is assumed to be global so that the majoron is not "eaten up" by the gauge boson and spontaneously broken. Majorons were originally formulated in four dimensions by Y. Chikashige, R. N. Mohapatra and R. D. Peccei to understand neutrino masses by the seesaw mechanism and are being searched for in the neutrino-less double beta decay process. There are theoretical extensions of this idea into supersymmetric theories and theories involving extra compactified dimensions. By propagating through the extra spatial dimensions the detectable number of majoron creation events vary accordingly. Mathematically, majorons may be modeled by allowing them to propagate through a material while all other Standard Model forces are fixed to an orbifold point.

Experiments studying double beta decay have set limits on decay modes that emit majorons.

NEMO[2] has observed a variety of elements. EXO[3] and Kamland-Zen[4] have set half-life limits for majoron decays in xenon.

Lattanzi, M. (2008). "Decaying Majoron Dark Matter and Neutrino Masses". AIP Conference Proceedings. 966 (1): 163–169.arXiv:0802.3155. Bibcode:2008AIPC..966..163L. doi:10.1063/1.2836988.
Arnold, R.; Augier, C.; Baker, J. D.; Barabash, A. S.; Basharina-Freshville, A.; Blondel, S.; et al. (12 June 2014). "Search for neutrinoless double-beta decay of ... with the NEMO-3 detector". Physical Review D. 89 (11): 111101.arXiv:1311.5695. Bibcode:2014PhRvD..89k1101A. doi:10.1103/PhysRevD.89.111101.
Albert, J. B.; Auty, D. J.; Barbeau, P. S.; Beauchamp, E.; Beck, D.; Belov, V.; et al. (10 November 2014). "Search for Majoron-emitting modes of double-beta decay of ... with EXO-200". Physical Review D. 90 (9): 092004.arXiv:1409.6829. Bibcode:2014PhRvD..90i2004A. doi:10.1103/PhysRevD.90.092004.

Gando, A.; Gando, Y.; Hanakago, H.; Ikeda, H.; Inoue, K.; Kato, R.; et al. (6 August 2012). "Limits on Majoron-emitting double- decays of ... Xe in the KamLAND-Zen experiment". Physical Review C. 86 (2): 021601.arXiv:1205.6372. Bibcode:2012PhRvC..86b1601G. doi:10.1103/PhysRevC.86.021601.

Further reading

Balysh, A.; et al. (1996). "Bounds on new Majoron models from the Heidelberg-Moscow experiment". Physical Review D. 54 (5): 3641–3644.arXiv:nucl-ex/9511001. Bibcode:1996PhRvD..54.3641G. doi:10.1103/PhysRevD.54.3641.
Mohapatra, R.N.; Pérez-Lorenzana, A.; de S. Pires, C.A. (2000). "Neutrino mass, bulk majoron and neutrinoless double beta decay". Physics Letters B. 491 (1–2): 143–147.arXiv:hep-ph/0008158. Bibcode:2000PhLB..491..143M. doi:10.1016/S0370-2693(00)01031-5.
Carone, C.D.; Conroy, J.M.; Kwee, H.J. (2002). "Bulk majorons at colliders". Physics Letters B. 538 (1–2): 115–120.arXiv:hep-ph/0204045. Bibcode:2002PhLB..538..115C. doi:10.1016/S0370-2693(02)01943-3.
Frampton, P.H.; Oh, M.C.; Yoshikawa, T. (2002). "Majoron mass zeros from Higgs triplet vacuum expectation values without a Majoron problem". Physical Review D. 66 (3): 033007.arXiv:hep-ph/0204273. Bibcode:2002PhRvD..66c3007F. doi:10.1103/PhysRevD.66.033007.
Grossman, Y.; Haber, H.E. (2003). "The would-be Majoron in R-parity-violating supersymmetry". Physical Review D. 67 (3): 036002.arXiv:hep-ph/0210273. Bibcode:2003PhRvD..67c6002G. doi:10.1103/PhysRevD.67.036002.
de S. Pires, C.A.; Rodrigues da Silva, P.S. (2004). "Spontaneous breaking of the lepton number and invisible majoron in a 3-3-1 model". European Physical Journal C. 36 (3): 397–403.arXiv:hep-ph/0307253. Bibcode:2004EPJC...36..397D. doi:10.1140/epjc/s2004-01949-3.


Particles in physics

Up (quark antiquark) Down (quark antiquark) Charm (quark antiquark) Strange (quark antiquark) Top (quark antiquark) Bottom (quark antiquark)


Electron Positron Muon Antimuon Tau Antitau Electron neutrino Electron antineutrino Muon neutrino Muon antineutrino Tau neutrino Tau antineutrino


Photon Gluon W and Z bosons


Higgs boson

Ghost fields

Faddeev–Popov ghosts


Gluino Gravitino Photino


Axino Chargino Higgsino Neutralino Sfermion (Stop squark)


Axion Curvaton Dilaton Dual graviton Graviphoton Graviton Inflaton Leptoquark Magnetic monopole Majoron Majorana fermion Dark photon Planck particle Preon Sterile neutrino Tachyon W′ and Z′ bosons X and Y bosons


Proton Antiproton Neutron Antineutron Delta baryon Lambda baryon Sigma baryon Xi baryon Omega baryon


Pion Rho meson Eta and eta prime mesons Phi meson J/psi meson Omega meson Upsilon meson Kaon B meson D meson Quarkonium

Exotic hadrons

Tetraquark Pentaquark


Atomic nuclei Atoms Exotic atoms
Positronium Muonium Tauonium Onia Pionium Superatoms Molecules


Hexaquark Heptaquark Skyrmion


Glueball Theta meson T meson


Mesonic molecule Pomeron Diquark R-hadron


Anyon Davydov soliton Dropleton Exciton Hole Magnon Phonon Plasmaron Plasmon Polariton Polaron Roton Trion


Baryons Mesons Particles Quasiparticles Timeline of particle discoveries


History of subatomic physics
timeline Standard Model
mathematical formulation Subatomic particles Particles Antiparticles Nuclear physics Eightfold way
Quark model Exotic matter Massless particle Relativistic particle Virtual particle Wave–particle duality Particle chauvinism

Wikipedia books

Hadronic Matter Particles of the Standard Model Leptons Quarks

Physics Encyclopedia



Hellenica World - Scientific Library

Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License