In particle physics, supersymmetry (SUSY) is a conjectured relationship between two basic classes of elementary particles: bosons, which have an integer-valued spin, and fermions, which have a half-integer spin.[1][2] A type of spacetime symmetry, supersymmetry is a possible candidate for undiscovered particle physics, and seen by some physicists as an elegant solution to many current problems in particle physics if confirmed correct, which could resolve various areas where current theories are believed to be incomplete. A supersymmetrical extension to the Standard Model could resolve major hierarchy problems within gauge theory, by guaranteeing that quadratic divergences of all orders will cancel out in perturbation theory.
In supersymmetry, each particle from one group would have an associated particle in the other, known as its superpartner, the spin of which differs by a half-integer. These superpartners would be new and undiscovered particles; for example, there would be a particle called a "selectron" (superpartner electron), a bosonic partner of the electron. In the simplest supersymmetry theories, with perfectly "unbroken" supersymmetry, each pair of superpartners would share the same mass and internal quantum numbers besides spin. Since we expect to find these "superpartners" using present-day equipment, if supersymmetry exists then it consists of a spontaneously broken symmetry, allowing superpartners to differ in mass.[3][4][5] Spontaneously broken supersymmetry could solve many problems in particle physics, including the hierarchy problem.
There is no experimental evidence that supersymmetry is correct, or whether or not other extensions to current models might be more accurate. In part, this is because it is only since around 2010 that particle accelerators specifically designed to study physics beyond the Standard Model have become operational (i.e. the LHC), and because it is not yet known where exactly to look, nor the energies required for a successful search.
The main reasons for supersymmetry being supported by some physicists is that the current theories are known to be incomplete and their limitations are well established, and supersymmetry could be an attractive solution to some of the major concerns.[6][7]
Motivations
Direct confirmation would entail production of superpartners in collider experiments, such as the Large Hadron Collider (LHC). The first runs of the LHC found no previously-unknown particles other than the Higgs boson which was already suspected to exist as part of the Standard Model, and therefore no evidence for supersymmetry.[6][7]
Indirect methods include the search for a permanent electric dipole moment (EDM) in the known Standard Model particles, which can arise when the Standard Model particle interacts with the supersymmetric particles. The current best constraint on the electron electric dipole moment put it to be smaller than 10−28 e·cm, equivalent to a sensitivity to new physics at the TeV scale and matching that of the current best particle colliders.[8] A permanent EDM in any fundamental particle points towards time-reversal violating physics, and therefore also CP-symmetry violation via the CPT theorem. Such EDM experiments are also much more scalable than conventional particle accelerators and offer a practical alternative to detecting physics beyond the standard model as accelerator experiments become increasingly costly and complicated to maintain.
These findings disappointed many physicists, who believed that supersymmetry (and other theories relying upon it) were by far the most promising theories for "new" physics, and had hoped for signs of unexpected results from these runs.[9][10] Former enthusiastic supporter Mikhail Shifman went as far as urging the theoretical community to search for new ideas and accept that supersymmetry was a failed theory.[11] This opinion is not universally accepted with some researchers suggesting that this "naturalness" crisis was premature because various calculations were too optimistic about the limits of masses which would allow a supersymmetry based solution.[12][13]
To reconcile the lack of experimental evidence for SUSY, some researchers suggest that the string theory landscape could have a power law statistical pull on soft SUSY breaking terms to large values (depending on the number of hidden sector SUSY breaking fields contributing to the soft terms).[14] If this is coupled with an anthropic requirement that contributions to the weak scale not exceed a factor between 2 and 5 from its measured value (as argued by Agrawal et al.[15]), then the Higgs mass is pulled up to the vicinity of 125 GeV while most sparticles are pulled to values beyond the current reach of LHC.[16] An exception occurs for higgsinos which gain mass not from SUSY breaking but rather from whatever mechanism solves the SUSY mu problem. Light higgsino pair production in association with hard initial state jet radiation leads to a soft opposite-sign dilepton plus jet plus missing transverse energy signal.[17] Such an excess seems to be appearing in current Atlas data with 139 fb−1 of integrated luminosity.[18]
Prospective benefits
There are numerous phenomenological motivations for supersymmetry close to the electroweak scale, as well as technical motivations for supersymmetry at any scale.
The hierarchy problem
Supersymmetry close to the electroweak scale solves the hierarchy problem that afflicts the Standard Model.[19] In the Standard Model, the electroweak scale receives enormous Planck-scale quantum corrections. The observed hierarchy between the electroweak scale and the Planck scale must be achieved with extraordinary fine tuning. In a supersymmetric theory, on the other hand, Planck-scale quantum corrections cancel between partners and superpartners (owing to a minus sign associated with fermionic loops). The hierarchy between the electroweak scale and the Planck scale is achieved in a natural manner, without miraculous fine-tuning.
Gauge coupling unification
The idea that the gauge symmetry groups unify at high-energy is called Grand unification theory. In the Standard Model, however, the weak, strong and electromagnetic couplings fail to unify at high energy. In a supersymmetry theory, the running of the gauge couplings are modified, and precise high-energy unification of the gauge couplings is achieved. The modified running also provides a natural mechanism for radiative electroweak symmetry breaking.
Dark matter
TeV-scale supersymmetry (augmented with a discrete symmetry) typically provides a candidate dark matter particle at a mass scale consistent with thermal relic abundance calculations.[20][21]
Other technical motivations
Supersymmetry is also motivated by solutions to several theoretical problems, for generally providing many desirable mathematical properties, and for ensuring sensible behavior at high energies. Supersymmetric quantum field theory is often much easier to analyze, as many more problems become mathematically tractable. When supersymmetry is imposed as a local symmetry, Einstein's theory of general relativity is included automatically, and the result is said to be a theory of supergravity. It is also a necessary feature of the most popular candidate for a theory of everything, superstring theory, and a SUSY theory could explain the issue of cosmological inflation.
Another theoretically appealing property of supersymmetry is that it offers the only "loophole" to the Coleman–Mandula theorem, which prohibits spacetime and internal symmetries from being combined in any nontrivial way, for quantum field theories like the Standard Model with very general assumptions. The Haag–Łopuszański–Sohnius theorem demonstrates that supersymmetry is the only way spacetime and internal symmetries can be combined consistently.[22]
History
See also: History of string theory
A supersymmetry relating mesons and baryons was first proposed, in the context of hadronic physics, by Hironari Miyazawa in 1966. This supersymmetry did not involve spacetime, that is, it concerned internal symmetry, and was broken badly. Miyazawa's work was largely ignored at the time.[23][24][25][26]
J. L. Gervais and B. Sakita (in 1971),[27] Yu. A. Golfand and E. P. Likhtman (also in 1971), and D. V. Volkov and V. P. Akulov (1972),[28] independently rediscovered supersymmetry in the context of quantum field theory, a radically new type of symmetry of spacetime and fundamental fields, which establishes a relationship between elementary particles of different quantum nature, bosons and fermions, and unifies spacetime and internal symmetries of microscopic phenomena. Supersymmetry with a consistent Lie-algebraic graded structure on which the Gervais-Sakita rediscovery was based directly first arose in 1971[29] in the context of an early version of string theory by Pierre Ramond, John H. Schwarz and André Neveu.
Finally, Julius Wess and Bruno Zumino (in 1974)[30] identified the characteristic renormalization features of four-dimensional supersymmetric field theories, which identified them as remarkable QFTs, and they and Abdus Salam and their fellow researchers introduced early particle physics applications. The mathematical structure of supersymmetry (graded Lie superalgebras) has subsequently been applied successfully to other topics of physics, ranging from nuclear physics,[31][32] critical phenomena,[33] quantum mechanics to statistical physics. It remains a vital part of many proposed theories of physics.
The first realistic supersymmetric version of the Standard Model was proposed in 1977 by Pierre Fayet and is known as the Minimal Supersymmetric Standard Model or MSSM for short. It was proposed to solve, amongst other things, the hierarchy problem.
Applications
Extension of possible symmetry groups
One reason that physicists explored supersymmetry is because it offers an extension to the more familiar symmetries of quantum field theory. These symmetries are grouped into the Poincaré group and internal symmetries and the Coleman–Mandula theorem showed that under certain assumptions, the symmetries of the S-matrix must be a direct product of the Poincaré group with a compact internal symmetry group or if there is not any mass gap, the conformal group with a compact internal symmetry group. In 1971 Golfand and Likhtman were the first to show that the Poincaré algebra can be extended through introduction of four anticommuting spinor generators (in four dimensions), which later became known as supercharges. In 1975, the Haag–Łopuszański–Sohnius theorem analyzed all possible superalgebras in the general form, including those with an extended number of the supergenerators and central charges. This extended super-Poincaré algebra paved the way for obtaining a very large and important class of supersymmetric field theories.
The supersymmetry algebra
Main article: Supersymmetry algebra
Traditional symmetries of physics are generated by objects that transform by the tensor representations of the Poincaré group and internal symmetries. Supersymmetries, however, are generated by objects that transform by the spin representations. According to the spin-statistics theorem, bosonic fields commute while fermionic fields anticommute. Combining the two kinds of fields into a single algebra requires the introduction of a Z2-grading under which the bosons are the even elements and the fermions are the odd elements. Such an algebra is called a Lie superalgebra.
The simplest supersymmetric extension of the Poincaré algebra is the Super-Poincaré algebra. Expressed in terms of two Weyl spinors, has the following anti-commutation relation:
\( {\displaystyle \{Q_{\alpha },{\bar {Q}}_{\dot {\beta }}\}=2(\sigma ^{\mu })_{\alpha {\dot {\beta }}}P_{\mu }} \)
and all other anti-commutation relations between the Qs and commutation relations between the Qs and Ps vanish. In the above expression Pμ = −i ∂μ are the generators of translation and σμ are the Pauli matrices.
There are representations of a Lie superalgebra that are analogous to representations of a Lie algebra. Each Lie algebra has an associated Lie group and a Lie superalgebra can sometimes be extended into representations of a Lie supergroup.
The Supersymmetric Standard Model
Main article: Minimal Supersymmetric Standard Model
Incorporating supersymmetry into the Standard Model requires doubling the number of particles since there is no way that any of the particles in the Standard Model can be superpartners of each other. With the addition of new particles, there are many possible new interactions. The simplest possible supersymmetric model consistent with the Standard Model is the Minimal Supersymmetric Standard Model (MSSM) which can include the necessary additional new particles that are able to be superpartners of those in the Standard Model.
Cancellation of the Higgs boson quadratic mass renormalization between fermionic top quark loop and scalar stop squark tadpole Feynman diagrams in a supersymmetric extension of the Standard Model
One of the main motivations for SUSY comes from the quadratically divergent contributions to the Higgs mass squared. The quantum mechanical interactions of the Higgs boson causes a large renormalization of the Higgs mass and unless there is an accidental cancellation, the natural size of the Higgs mass is the greatest scale possible. This problem is known as the hierarchy problem. Supersymmetry reduces the size of the quantum corrections by having automatic cancellations between fermionic and bosonic Higgs interactions. If supersymmetry is restored at the weak scale, then the Higgs mass is related to supersymmetry breaking which can be induced from small non-perturbative effects explaining the vastly different scales in the weak interactions and gravitational interactions.
In many supersymmetric Standard Models there is a heavy stable particle (such as neutralino) which could serve as a weakly interacting massive particle (WIMP) dark matter candidate. The existence of a supersymmetric dark matter candidate is related closely to R-parity.
The standard paradigm for incorporating supersymmetry into a realistic theory is to have the underlying dynamics of the theory be supersymmetric, but the ground state of the theory does not respect the symmetry and supersymmetry is broken spontaneously. The supersymmetry break can not be done permanently by the particles of the MSSM as they currently appear. This means that there is a new sector of the theory that is responsible for the breaking. The only constraint on this new sector is that it must break supersymmetry permanently and must give superparticles TeV scale masses. There are many models that can do this and most of their details do not matter. In order to parameterize the relevant features of supersymmetry breaking, arbitrary soft SUSY breaking terms are added to the theory which temporarily break SUSY explicitly but could never arise from a complete theory of supersymmetry breaking.
Gauge-coupling unification
Main article: Minimal Supersymmetric Standard Model § Gauge-coupling unification
One piece of evidence for supersymmetry existing is gauge coupling unification. The renormalization group evolution of the three gauge coupling constants of the Standard Model is somewhat sensitive to the present particle content of the theory. These coupling constants do not quite meet together at a common energy scale if we run the renormalization group using the Standard Model.[34][35] After incorporating minimal SUSY, joint convergence of the coupling constants is projected at approximately 1016 GeV.[34]
Supersymmetric quantum mechanics
Main article: Supersymmetric quantum mechanics
Supersymmetric quantum mechanics adds the SUSY superalgebra to quantum mechanics as opposed to quantum field theory. Supersymmetric quantum mechanics often becomes relevant when studying the dynamics of supersymmetric solitons, and due to the simplified nature of having fields which are only functions of time (rather than space-time), a great deal of progress has been made in this subject and it is now studied in its own right.
SUSY quantum mechanics involves pairs of Hamiltonians which share a particular mathematical relationship, which are called partner Hamiltonians. (The potential energy terms which occur in the Hamiltonians are then known as partner potentials.) An introductory theorem shows that for every eigenstate of one Hamiltonian, its partner Hamiltonian has a corresponding eigenstate with the same energy. This fact can be exploited to deduce many properties of the eigenstate spectrum. It is analogous to the original description of SUSY, which referred to bosons and fermions. We can imagine a "bosonic Hamiltonian", whose eigenstates are the various bosons of our theory. The SUSY partner of this Hamiltonian would be "fermionic", and its eigenstates would be the theory's fermions. Each boson would have a fermionic partner of equal energy.
Supersymmetry in condensed matter physics
SUSY concepts have provided useful extensions to the WKB approximation. Additionally, SUSY has been applied to disorder averaged systems both quantum and non-quantum (through statistical mechanics), the Fokker–Planck equation being an example of a non-quantum theory. The 'supersymmetry' in all these systems arises from the fact that one is modelling one particle and as such the 'statistics' do not matter. The use of the supersymmetry method provides a mathematical rigorous alternative to the replica trick, but only in non-interacting systems, which attempts to address the so-called 'problem of the denominator' under disorder averaging. For more on the applications of supersymmetry in condensed matter physics see Efetov (1997).[36]
Supersymmetry in optics
Integrated optics was recently found[37] to provide a fertile ground on which certain ramifications of SUSY can be explored in readily-accessible laboratory settings. Making use of the analogous mathematical structure of the quantum-mechanical Schrödinger equation and the wave equation governing the evolution of light in one-dimensional settings, one may interpret the refractive index distribution of a structure as a potential landscape in which optical wave packets propagate. In this manner, a new class of functional optical structures with possible applications in phase matching, mode conversion[38] and space-division multiplexing becomes possible. SUSY transformations have been also proposed as a way to address inverse scattering problems in optics and as a one-dimensional transformation optics[39]
Supersymmetry in dynamical systems
Main article: Supersymmetric theory of stochastic dynamics
All stochastic (partial) differential equations, the models for all types of continuous time dynamical systems, possess topological supersymmetry.[40][41] In the operator representation of stochastic evolution, the topological supersymmetry is the exterior derivative which is commutative with the stochastic evolution operator defined as the stochastically averaged pullback induced on differential forms by SDE-defined diffeomorphisms of the phase space. The topological sector of the so-emerging supersymmetric theory of stochastic dynamics can be recognized as the Witten-type topological field theory.
The meaning of the topological supersymmetry in dynamical systems is the preservation of the phase space continuity—infinitely close points will remain close during continuous time evolution even in the presence of noise. When the topological supersymmetry is broken spontaneously, this property is violated in the limit of the infinitely long temporal evolution and the model can be said to exhibit (the stochastic generalization of) the butterfly effect. From a more general perspective, spontaneous breakdown of the topological supersymmetry is the theoretical essence of the ubiquitous dynamical phenomenon variously known as chaos, turbulence, self-organized criticality etc. The Goldstone theorem explains the associated emergence of the long-range dynamical behavior that manifests itself as 1/f noise, butterfly effect, and the scale-free statistics of sudden (instantonic) processes, such as earthquakes, neuroavalanches, and solar flares, known as the Zipf's law and the Richter scale.
Supersymmetry in mathematics
SUSY is also sometimes studied mathematically for its intrinsic properties. This is because it describes complex fields satisfying a property known as holomorphy, which allows holomorphic quantities to be exactly computed. This makes supersymmetric models useful "toy models" of more realistic theories. A prime example of this has been the demonstration of S-duality in four-dimensional gauge theories[42] that interchanges particles and monopoles.
The proof of the Atiyah–Singer index theorem is much simplified by the use of supersymmetric quantum mechanics.
Supersymmetry in quantum gravity
String theory
Calabi yau formatted.svg
Fundamental objects
String Brane D-brane
Perturbative theory
Bosonic Superstring (Type I, Type II, Heterotic)
Non-perturbative results
S-duality T-duality U-duality M-theory F-theory AdS/CFT correspondence
Phenomenology
Phenomenology Cosmology Landscape
Mathematics
Mirror symmetry Monstrous moonshine
Related concepts
[hide]
Theory of everything Conformal field theory Quantum gravity Supersymmetry Supergravity Twistor string theory N = 4 supersymmetric Yang–Mills theory Kaluza–Klein theory Multiverse Holographic principle
Theorists
History Glossary
vte
Main articles: Superstring theory and String theory
Supersymmetry is part of superstring theory, a string theory of quantum gravity, although it could in theory be a component of other quantum gravity theories as well, such as loop quantum gravity. For superstring theory to be consistent, supersymmetry seems to be required at some level (although it may be a strongly broken symmetry). If experimental evidence confirms supersymmetry in the form of supersymmetric particles such as the neutralino that is often believed to be the lightest superpartner, some people believe this would be a major boost to superstring theory. Since supersymmetry is a required component of superstring theory, any discovered supersymmetry would be consistent with superstring theory. If the Large Hadron Collider and other major particle physics experiments fail to detect supersymmetric partners, many versions of superstring theory which had predicted certain low mass superpartners to existing particles may need to be significantly revised.
General supersymmetry
Supersymmetry appears in many related contexts of theoretical physics. It is possible to have multiple supersymmetries and also have supersymmetric extra dimensions.
Extended supersymmetry
It is possible to have more than one kind of supersymmetry transformation. Theories with more than one supersymmetry transformation are known as extended supersymmetric theories. The more supersymmetry a theory has, the more constrained are the field content and interactions. Typically the number of copies of a supersymmetry is a power of 2 (1, 2, 4, 8...). In four dimensions, a spinor has four degrees of freedom and thus the minimal number of supersymmetry generators is four in four dimensions and having eight copies of supersymmetry means that there are 32 supersymmetry generators.
The maximal number of supersymmetry generators possible is 32. Theories with more than 32 supersymmetry generators automatically have massless fields with spin greater than 2. It is not known how to make massless fields with spin greater than two interact, so the maximal number of supersymmetry generators considered is 32. This is due to the Weinberg–Witten theorem. This corresponds to an N = 8 supersymmetry theory. Theories with 32 supersymmetries automatically have a graviton.
For four dimensions there are the following theories, with the corresponding multiplets[43] (CPT adds a copy, whenever they are not invariant under such symmetry):
N = 1 Chiral multiplet (0, 1/2)
Vector multiplet (1/2, 1)
Gravitino multiplet (1, 3/2)
Graviton multiplet (3/2, 2)
N = 2 Hypermultiplet (−1/2, 02, 1/2)
Vector multiplet (0, 1/2 2, 1)
Supergravity multiplet (1, 3/2 2, 2)
N = 4 Vector multiplet (−1, −1/2 4, 06, 1/2 4, 1)
Supergravity multiplet (0, 1/2 4, 16, 3/2 4, 2)
N = 8 Supergravity multiplet (−2, −3/2 8, −128, −1/2 56, 070, 1/2 56, 128, 3/2 8, 2)
Supersymmetry in alternate numbers of dimensions
It is possible to have supersymmetry in dimensions other than four. Because the properties of spinors change drastically between different dimensions, each dimension has its characteristic. In d dimensions, the size of spinors is approximately 2d/2 or 2(d − 1)/2. Since the maximum number of supersymmetries is 32, the greatest number of dimensions in which a supersymmetric theory can exist is eleven.
Fractional supersymmetry
Fractional supersymmetry is a generalization of the notion of supersymmetry in which the minimal positive amount of spin does not have to be 1/2 but can be an arbitrary 1/N for integer value of N. Such a generalization is possible in two or fewer spacetime dimensions.
Current status
Supersymmetric models are constrained by a variety of experiments, including measurements of low-energy observables – for example, the anomalous magnetic moment of the muon at Fermilab; the WMAP dark matter density measurement and direct detection experiments – for example, XENON-100 and LUX; and by particle collider experiments, including B-physics, Higgs phenomenology and direct searches for superpartners (sparticles), at the Large Electron–Positron Collider, Tevatron and the LHC. In fact, CERN publicly states that if supersymmetry "is correct, supersymmetric particles should appear in collisions at the LHC."[44]
Historically, the tightest limits were from direct production at colliders. The first mass limits for squarks and gluinos were made at CERN by the UA1 experiment and the UA2 experiment at the Super Proton Synchrotron. LEP later set very strong limits,[45] which in 2006 were extended by the D0 experiment at the Tevatron.[46][47] From 2003-2015, WMAP's and Planck's dark matter density measurements have strongly constrained supersymmetry models, which, if they explain dark matter, have to be tuned to invoke a particular mechanism to sufficiently reduce the neutralino density.
Prior to the beginning of the LHC, in 2009, fits of available data to CMSSM and NUHM1 indicated that squarks and gluinos were most likely to have masses in the 500 to 800 GeV range, though values as high as 2.5 TeV were allowed with low probabilities. Neutralinos and sleptons were expected to be quite light, with the lightest neutralino and the lightest stau most likely to be found between 100 and 150 GeV.[48]
The first run of the LHC found no evidence for supersymmetry, and, as a result, surpassed existing experimental limits from the Large Electron–Positron Collider and Tevatron and partially excluded the aforementioned expected ranges.[49]
In 2011–12, the LHC discovered a Higgs boson with a mass of about 125 GeV, and with couplings to fermions and bosons which are consistent with the Standard Model. The MSSM predicts that the mass of the lightest Higgs boson should not be much higher than the mass of the Z boson, and, in the absence of fine tuning (with the supersymmetry breaking scale on the order of 1 TeV), should not exceed 135 GeV.[50]
The LHC result seems problematic for the minimal supersymmetric model, as the value of 125 GeV is relatively large for the model and can only be achieved with large radiative loop corrections from top squarks, which many theorists consider to be "unnatural" (see naturalness (physics) and fine tuning).[51] Some researchers seek to reconcile the current situation with the concept of "stringy naturalness",[52] where the Higgs mass is pulled via string landscape effects up to 125 GeV and sparticles masses pulled beyond the current LHC reach.
See also
Anyon
Minimal Supersymmetric Standard Model
Next-to-Minimal Supersymmetric Standard Model
Quantum group
Split supersymmetry
Supercharge
Superfield
Supergeometry
Supergravity
Supergroup
Superpartner
Superspace
Supersplit supersymmetry
Supersymmetric gauge theory
Supersymmetry as a quantum group
Supersymmetry nonrenormalization theorems
Wess–Zumino model
References
Haber, Howie. "Supersymmetry, Part I (Theory)" (PDF). Reviews, Tables and Plots. Particle Data Group (PDG). Retrieved 8 July 2015.
"supersymmetry". Merriam-Webster. Retrieved October 2, 2017.
Martin, Stephen P. (1997). "A Supersymmetry Primer". Perspectives on Supersymmetry. Advanced Series on Directions in High Energy Physics. 18. pp. 1–98.arXiv:hep-ph/9709356. doi:10.1142/9789812839657_0001. ISBN 978-981-02-3553-6. S2CID 118973381.
Baer, Howard; Tata, Xerxes (2006). Weak scale supersymmetry: From superfields to scattering events.
Dine, Michael (2007). Supersymmetry and String Theory: Beyond the Standard Model. p. 169.
"ATLAS Supersymmetry Public Results". ATLAS Collaboration. CERN. Retrieved 24 September 2017.
"CMS Supersymmetry Public Results". CMS. CERN. Retrieved 24 September 2017.
Baron J, Campbell WC, Demille D, Doyle JM, Gabrielse G, et al. (2014). "Order of Magnitude Smaller Limit on the Electric Dipole Moment of the Electron". Science. 343 (6168): 269–272.arXiv:1310.7534. Bibcode:2014Sci...343..269B. doi:10.1126/science.1248213. PMID 24356114. S2CID 564518.
Wolchover, Natalie (November 20, 2012). "Supersymmetry Fails Test, Forcing Physics to Seek New Ideas". Quanta Magazine.
Wolchover, Natalie (August 9, 2016). "What No New Particles Means for Physics". Quanta Magazine.
Shifman, M. (31 October 2012). Reflections and Impressionistic Portrait. Frontiers Beyond the Standard Model. FTPI.arXiv:1211.0004v1.
Howard Baer; Vernon Barger; Dan Mickelson (September 2013). "How conventional measures overestimate electroweak fine-tuning in supersymmetric theory". Physical Review D. 88 (9): 095013.arXiv:1309.2984. Bibcode:2013PhRvD..88i5013B. doi:10.1103/PhysRevD.88.095013. S2CID 119288477.
Howard Baer; Vernon Barger; Peisi Huang; Dan Mickelson; Azar Mustafayev; Xerxes Tata (December 2012). "Radiative natural supersymmetry: Reconciling electroweak fine-tuning and the Higgs boson mass". Physical Review D. 87 (11): 115028.arXiv:1212.2655. Bibcode:2013PhRvD..87k5028B. doi:10.1103/PhysRevD.87.115028. S2CID 73588737.
Michael R. Douglas (May 2004). "Statistical analysis of the supersymmetry breaking scale".arXiv:hep-th/0405279.
V. Agrawal; S. Barr; J. F. Donoghue; D. Seckel (January 1998). "Anthropic considerations in multiple domain theories and the scale of electroweak symmetry breaking". Physical Review Letters. 80 (9): 1822–1825.arXiv:hep-ph/9801253. Bibcode:1998PhRvL..80.1822A. doi:10.1103/PhysRevLett.80.1822. S2CID 14397884.
H. Baer; V. Barger; H. Serce; K. Sinha (December 2017). "Higgs and superparticle mass predictions from the landscape". Journal of High Energy Physics. 1803 (3): 002.arXiv:1712.01399. doi:10.1007/JHEP03(2018)002. S2CID 113404486.
H. Baer; A. Mustafayev; X. Tata (September 2014). "Monojet plus soft dilepton signal from light higgsino pair production at LHC14". Physical Review D. 90 (11): 115007.arXiv:1409.7058. Bibcode:2014PhRvD..90k5007B. doi:10.1103/PhysRevD.90.115007. S2CID 119194219.
Atlas Collaboration (May 2019). "Searches for electroweak production of supersymmetric particles with compressed mass spectra in roots=13 TeV pp collisions with the ATLAS detector". Atlas-Conf-2019-014.
David, Curtin (August 2011). Model Building And Collider Physics Above The Weak Scale (PDF) (PhD thesis). Cornell University.
Feng, Jonathan (11 May 2007). "Supersymmetric Dark Matter" (PDF). University of California, Irvine.
Bringmann, Torsten. "The WIMP "Miracle"" (PDF). University of Hamburg. Archived from the original (PDF) on 1 March 2013.
Haag, Rudolf; Łopuszański, Jan T.; Sohnius, Martin (1975). "All possible generators of supersymmetries of the S-matrix". Nuclear Physics B. 88 (2): 257–274. Bibcode:1975NuPhB..88..257H. doi:10.1016/0550-3213(75)90279-5.
H. Miyazawa (1966). "Baryon Number Changing Currents". Prog. Theor. Phys. 36 (6): 1266–1276. Bibcode:1966PThPh..36.1266M. doi:10.1143/PTP.36.1266.
H. Miyazawa (1968). "Spinor Currents and Symmetries of Baryons and Mesons". Phys. Rev. 170 (5): 1586–1590. Bibcode:1968PhRv..170.1586M. doi:10.1103/PhysRev.170.1586.
Kaku, Michio (1993). Quantum Field Theory. p. 663. ISBN 0-19-509158-2.
Freund, Peter (1988-03-31). Introduction to Supersymmetry. pp. 26–27, 138. ISBN 0-521-35675-X.
Gervais, J.-L.; Sakita, B. (1971). "Field theory interpretation of supergauges in dual models". Nuclear Physics B. 34 (2): 632–639. Bibcode:1971NuPhB..34..632G. doi:10.1016/0550-3213(71)90351-8.
D. V. Volkov, V. P. Akulov, Pisma Zh.Eksp.Teor.Fiz. 16 (1972) 621; Phys.Lett. B46 (1973) 109; V.P. Akulov, D.V. Volkov, Teor.Mat.Fiz. 18 (1974) 39
Ramond, P. (1971). "Dual Theory for Free Fermions". Physical Review D. 3 (10): 2415–2418. Bibcode:1971PhRvD...3.2415R. doi:10.1103/PhysRevD.3.2415.
Wess, J.; Zumino, B. (1974). "Supergauge transformations in four dimensions". Nuclear Physics B (Submitted manuscript). 70 (1): 39–50. Bibcode:1974NuPhB..70...39W. doi:10.1016/0550-3213(74)90355-1.
Hagen Kleinert, Discovery of Supersymmetry in Nuclei
Iachello, F. (1980). "Dynamical Supersymmetries in Nuclei". Physical Review Letters. 44 (12): 772–775. Bibcode:1980PhRvL..44..772I. doi:10.1103/PhysRevLett.44.772. S2CID 14130911.
Friedan, D.; Qiu, Z.; Shenker, S. (1984). "Conformal Invariance, Unitarity, and Critical Exponents in Two Dimensions". Physical Review Letters. 52 (18): 1575–1578. Bibcode:1984PhRvL..52.1575F. doi:10.1103/PhysRevLett.52.1575. S2CID 122320349.
Kane, Gordon L. (June 2003). "The Dawn of Physics Beyond the Standard Model" . Scientific American. 288 (6): 68–75. Bibcode:2003SciAm.288f..68K. doi:10.1038/scientificamerican0603-68. PMID 12764939.
"The Frontiers of Physics". Scientific American Special Edition. 15 (3): 8. 2005.
Efetov, Konstantin (1997). Supersymmetry in Disorder and Chaos. Cambridge University Press.
Miri, M.-A.; Heinrich, M.; El-Ganainy, R.; Christodoulides, D. N. (2013). "Superymmetric optical structures". Physical Review Letters. 110 (23): 233902.arXiv:1304.6646. Bibcode:2013PhRvL.110w3902M. doi:10.1103/PhysRevLett.110.233902. PMID 25167493. S2CID 15354588.
Heinrich, M.; Miri, M.-A.; Stützer, S.; El-Ganainy, R.; Nolte, S.; Szameit, A.; Christodoulides, D. N. (2014). "Superymmetric mode converters". Nature Communications. 5: 3698.arXiv:1401.5734. Bibcode:2014NatCo...5.3698H. doi:10.1038/ncomms4698. PMID 24739256. S2CID 2070325.
Miri, M.-A.; Heinrich, Matthias; Christodoulides, D. N. (2014). "SUSY-inspired one-dimensional transformation optics". Optica. 1 (2): 89–95. arXiv:1408.0832. Bibcode:2014arXiv1408.0832M. doi:10.1364/OPTICA.1.000089. S2CID 15561466.
Ovchinnikov, Igor (March 2016). "Introduction to Supersymmetric Theory of Stochastics". Entropy. 18 (4): 108.arXiv:1511.03393. Bibcode:2016Entrp..18..108O. doi:10.3390/e18040108. S2CID 2388285.
Ovchinnikov, Igor; Ensslin, Torsten (April 2016). "Kinematic dynamo, supersymmetry breaking, and chaos". Physical Review D. 93 (8): 085023.arXiv:1512.01651. Bibcode:2016PhRvD..93h5023O. doi:10.1103/PhysRevD.93.085023. S2CID 59367815.
Krasnitz, Michael (2003). Correlation functions in supersymmetric gauge theories from supergravity fluctuations (PDF). Princeton University Department of Physics: Princeton University Department of Physics. p. 91.
Polchinski, J. String Theory. Vol. 2: Superstring theory and beyond, Appendix B
"Supersymmetry predicts a partner particle for each particle in the Standard Model, to help explain why particles have mass". CERN: Supersymmetry. Retrieved 5 September 2019.
LEPSUSYWG, ALEPH, DELPHI, L3 and OPAL experiments, charginos, large m0 LEPSUSYWG/01-03.1
The D0-Collaboration (2009). "Search for associated production of charginos and neutralinos in the trilepton final state using 2.3 fb−1 of data". Physics Letters B. 680 (1): 34–43. arXiv:0901.0646. Bibcode:2009PhLB..680...34D. doi:10.1016/j.physletb.2009.08.011. hdl:10211.3/195394. S2CID 54016374.
The D0 Collaboration (2008). "Search for squarks and gluinos in events with jets and missing transverse energy using 2.1 fb−1 of pp− collision data at s = 1.96 TeV". Physics Letters B. 660 (5): 449–457. arXiv:0712.3805. Bibcode:2008PhLB..660..449D. doi:10.1016/j.physletb.2008.01.042. S2CID 18574837.
Buchmueller O, et al. (2009). "Likelihood Functions for Supersymmetric Observables in Frequentist Analyses of the CMSSM and NUHM1". The European Physical Journal C. 64 (3): 391–415. arXiv:0907.5568. Bibcode:2009EPJC...64..391B. doi:10.1140/epjc/s10052-009-1159-z. S2CID 9430917.
Roszkowski, Leszek; Sessolo, Enrico Maria; Williams, Andrew J. (11 August 2014). "What next for the CMSSM and the NUHM: improved prospects for superpartner and dark matter detection". Journal of High Energy Physics. 2014 (8): 67. arXiv:1405.4289. Bibcode:2014JHEP...08..067R. doi:10.1007/JHEP08(2014)067. S2CID 53526400.
Marcela Carena and Howard E. Haber; Haber (2003). "Higgs Boson Theory and Phenomenology". Progress in Particle and Nuclear Physics. 50 (1): 63–152. arXiv:hep-ph/0208209. Bibcode:2003PrPNP..50...63C. doi:10.1016/S0146-6410(02)00177-1. S2CID 5163410.
Draper, Patrick; Meade, Patrick; Reece, Matthew; Shih, David (December 2011). "Implications of a 125 GeV Higgs for the MSSM and Low-Scale SUSY Breaking". Physical Review D. 85 (9): 095007. arXiv:1112.3068. Bibcode:2012PhRvD..85i5007D. doi:10.1103/PhysRevD.85.095007. S2CID 118577425.
H. Baer; V. Barger; S. Salam (June 2019). "Naturalness versus stringy naturalness (with implications for collider and dark matter searches)". Physical Review Research. 1 (2): 023001. arXiv:1906.07741. Bibcode:2019arXiv190607741B. doi:10.1103/PhysRevResearch.1.023001. S2CID 195068902.
Further reading
Supersymmetry and Supergravity page in String Theory Wiki lists more books and reviews.
Theoretical introductions, free and online
S. Martin (2011). "A Supersymmetry Primer". Perspectives on Supersymmetry. Advanced Series on Directions in High Energy Physics. 18. pp. 1–98.arXiv:hep-ph/9709356. doi:10.1142/9789812839657_0001. ISBN 978-981-02-3553-6. S2CID 118973381.
Joseph D. Lykken (1996). "Introduction to Supersymmetry".arXiv:hep-th/9612114.
Manuel Drees (1996). "An Introduction to Supersymmetry".arXiv:hep-ph/9611409.
Adel Bilal (2001). "Introduction to Supersymmetry".arXiv:hep-th/0101055.
An Introduction to Global Supersymmetry by Philip Arygres, 2001
Monographs
Weak Scale Supersymmetry by Howard Baer and Xerxes Tata, 2006.
Cooper, F.; Khare, A.; Sukhatme, U. (1995). "Supersymmetry and quantum mechanics". Physics Reports (Submitted manuscript). 251 (5–6): 267–385.arXiv:hep-th/9405029. Bibcode:1995PhR...251..267C. doi:10.1016/0370-1573(94)00080-M. S2CID 119379742. (arXiv:hep-th/9405029).
Junker, G. (1996). Supersymmetric Methods in Quantum and Statistical Physics. doi:10.1007/978-3-642-61194-0. ISBN 978-3-540-61591-0..
Kane, Gordon L., Supersymmetry: Unveiling the Ultimate Laws of Nature, Basic Books, New York (2001). ISBN 0-7382-0489-7.
Drees, Manuel, Godbole, Rohini, and Roy, Probir, Theory & Phenomenology of Sparticles, World Scientific, Singapore (2005), ISBN 9-810-23739-1.
Kane, Gordon L., and Shifman, M., eds. The Supersymmetric World: The Beginnings of the Theory, World Scientific, Singapore (2000). ISBN 981-02-4522-X.
Müller-Kirsten, Harald J. W., and Wiedemann, Armin, Introduction to Supersymmetry, 2nd ed., World Scientific, Singapore (2010). ISBN 978-981-4293-41-9.
Weinberg, Steven, The Quantum Theory of Fields, Volume 3: Supersymmetry, Cambridge University Press, Cambridge, (1999). ISBN 0-521-66000-9.
Wess, Julius, and Jonathan Bagger, Supersymmetry and Supergravity, Princeton University Press, Princeton, (1992). ISBN 0-691-02530-4.
Nath, Pran, Supersymmetry, Supergravity and Unification, Cambridge University Press, Cambridge, (2016), ISBN 0-521-19702-3.
Duplij, Steven (2003). Duplij, Steven; Siegel, Warren; Bagger, Jonathan (eds.). Concise Encyclopedia of Supersymmetry. doi:10.1007/1-4020-4522-0. ISBN 978-1-4020-1338-6.
On experiments
Bennett GW, et al. (Muon (g−2) Collaboration) (2004). "Measurement of the negative muon anomalous magnetic moment to 0.7 ppm". Physical Review Letters. 92 (16): 161802.arXiv:hep-ex/0401008. Bibcode:2004PhRvL..92p1802B. doi:10.1103/PhysRevLett.92.161802. PMID 15169217. S2CID 3183567.
Brookhaven National Laboratory (Jan 8, 2004). New g−2 measurement deviates further from Standard Model. Press Release.
Fermi National Accelerator Laboratory (Sept 25, 2006). Fermilab's CDF scientists have discovered the quick-change behavior of the B-sub-s meson. Press Release.
vte
Particles in physics
Elementary
Fermions
Quarks
Up (quark antiquark) Down (quark antiquark) Charm (quark antiquark) Strange (quark antiquark) Top (quark antiquark) Bottom (quark antiquark)
Leptons
Electron Positron Muon Antimuon Tau Antitau Electron neutrino Electron antineutrino Muon neutrino Muon antineutrino Tau neutrino Tau antineutrino
Bosons
Gauge
Scalar
Hypothetical
Superpartners
Gauginos
Others
Axino Chargino Higgsino Neutralino Sfermion (Stop squark)
Others
Axion Curvaton Dilaton Dual graviton Graviphoton Graviton Inflaton Leptoquark Magnetic monopole Majoron Majorana fermion Dark photon Planck particle Preon Sterile neutrino Tachyon W′ and Z′ bosons X and Y bosons
Nucleon
Proton Antiproton Neutron Antineutron Delta baryon Lambda baryon Sigma baryon Xi baryon Omega baryon
Mesons
Pion Rho meson Eta and eta prime mesons Phi meson J/psi meson Omega meson Upsilon meson Kaon B meson D meson Quarkonium
Exotic hadrons
Others
Atomic nuclei Atoms Exotic atoms
Positronium Muonium Tauonium Onia Pionium Superatoms Molecules
Hypothetical
Baryons
Hexaquark Heptaquark Skyrmion
Mesons
Others
Mesonic molecule Pomeron Diquark R-hadron
Anyon Davydov soliton Dropleton Exciton Hole Magnon Phonon Plasmaron Plasmon Polariton Polaron Roton Trion
Lists
Baryons Mesons Particles Quasiparticles Timeline of particle discoveries
Related
History of subatomic physics
timeline Standard Model
mathematical formulation Subatomic particles Particles Antiparticles Nuclear physics Eightfold way
Quark model Exotic matter Massless particle Relativistic particle Virtual particle Wave–particle duality Particle chauvinism
Wikipedia books
Hadronic Matter Particles of the Standard Model Leptons Quarks
vte
String theory
Background
Strings History of string theory
First superstring revolution Second superstring revolution String theory landscape
Calabi-Yau-alternate
Theory
Nambu–Goto action Polyakov action Bosonic string theory Superstring theory
Type I string Type II string
Type IIA string Type IIB string Heterotic string N=2 superstring F-theory String field theory Matrix string theory Non-critical string theory Non-linear sigma model Tachyon condensation RNS formalism GS formalism
String duality
T-duality S-duality U-duality Montonen–Olive duality
Particles and fields
Graviton Dilaton Tachyon Ramond–Ramond field Kalb–Ramond field Magnetic monopole Dual graviton Dual photon
Branes
D-brane NS5-brane M2-brane M5-brane S-brane Black brane Black holes Black string Brane cosmology Quiver diagram Hanany–Witten transition
Conformal field theory
Virasoro algebra Mirror symmetry Conformal anomaly Conformal algebra Superconformal algebra Vertex operator algebra Loop algebra Kac–Moody algebra Wess–Zumino–Witten model
Gauge theory
Anomalies Instantons Chern–Simons form Bogomol'nyi–Prasad–Sommerfield bound Exceptional Lie groups (G2, F4, E6, E7, E8) ADE classification Dirac string p-form electrodynamics
Geometry
Kaluza–Klein theory Compactification Why 10 dimensions? Kähler manifold Ricci-flat manifold
Calabi–Yau manifold Hyperkähler manifold
K3 surface G2 manifold Spin(7)-manifold Generalized complex manifold Orbifold Conifold Orientifold Moduli space Hořava–Witten domain wall K-theory (physics) Twisted K-theory
Supergravity Superspace Lie superalgebra Lie supergroup
Holography
Holographic principle AdS/CFT correspondence
M-theory
Matrix theory Introduction to M-theory
String theorists
Aganagić Arkani-Hamed Atiyah Banks Berenstein Bousso Cleaver Curtright Dijkgraaf Distler Douglas Duff Ferrara Fischler Friedan Gates Gliozzi Gopakumar Green Greene Gross Gubser Gukov Guth Hanson Harvey Hořava Gibbons Kachru Kaku Kallosh Kaluza Kapustin Klebanov Knizhnik Kontsevich Klein Linde Maldacena Mandelstam Marolf Martinec Minwalla Moore Motl Mukhi Myers Nanopoulos Năstase Nekrasov Neveu Nielsen van Nieuwenhuizen Novikov Olive Ooguri Ovrut Polchinski Polyakov Rajaraman Ramond Randall Randjbar-Daemi Roček Rohm Scherk Schwarz Seiberg Sen Shenker Siegel Silverstein Sơn Staudacher Steinhardt Strominger Sundrum Susskind 't Hooft Townsend Trivedi Turok Vafa Veneziano Verlinde Verlinde Wess Witten Yau Yoneya Zamolodchikov Zamolodchikov Zaslow Zumino Zwiebach
vte
Standard Model
Background
Particle physics
Fermions Gauge boson Higgs boson Quantum field theory Gauge theory Strong interaction
Color charge Quantum chromodynamics Quark model Electroweak interaction
Weak interaction Quantum electrodynamics Fermi's interaction Weak hypercharge Weak isospin
Constituents
CKM matrix Spontaneous symmetry breaking Higgs mechanism Mathematical formulation of the Standard Model
Beyond the
Standard Model
Evidence
Hierarchy problem Dark matter Cosmological constant problem Strong CP problem Neutrino oscillation
Theories
Technicolor Kaluza–Klein theory Grand Unified Theory Theory of everything
MSSM Superstring theory Supergravity
String theory Loop quantum gravity Causal dynamical triangulation Canonical quantum gravity Superfluid vacuum theory Twistor theory
Experiments
Gran Sasso INO LHC SNO Super-K Tevatron
Hellenica World - Scientific Library
Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License