In particle physics, a rho meson is a short-lived hadronic particle that is an isospin triplet whose three states are denoted as ρ+,ρ0 and ρ−. Along with pions and omega mesons, the rho meson carries the nuclear force within the atomic nucleus. After the pions and kaons, the rho mesons are the lightest strongly interacting particle, with a mass of 775.45±0.04 MeV (roughly 770 MeV) for all three states.[a]
The rho mesons have a very short lifetime and their decay width is about 145 MeV with the peculiar feature that the decay widths are not described by a Breit–Wigner form. The principal decay route of the rho mesons is to a pair of pions with a branching rate of 99.9%.[b]
Composition
In the De Rujula–Georgi–Glashow description of hadrons,[1] the rho mesons can be interpreted as a bound state of a quark and an anti-quark and is an excited version of the pion. Unlike the pion, the rho meson has spin j = 1 (a vector meson) and a much higher value of the mass. This mass difference between the pions and rho mesons is attributed to a large hyperfine interaction between the quark and anti-quark. The main objection with the De Rujula–Georgi–Glashow description is that it attributes the lightness of the pions as an accident rather than a result of chiral symmetry breaking.
The rho mesons can be thought of as the gauge bosons of a spontaneously broken gauge symmetry whose local character is emergent (arising from QCD); Note that this broken gauge symmetry (sometimes called hidden local symmetry) is distinct from the global chiral symmetry acting on the flavors. This was described by Howard Georgi in a paper titled "The Vector Limit of Chiral Symmetry" where he ascribed much of the literature of hidden local symmetry to a non-linear sigma model.[2]
Particle name | Particle symbol |
Antiparticle symbol |
Quark content[3] |
Mass (MeV/c2) | IG | JPC | S | C | B' | Mean lifetime (s)[c] | Commonly decays to (>5% of decays) |
---|---|---|---|---|---|---|---|---|---|---|---|
Charged rho meson[4] | ρ+ (770) |
ρ− (770) |
u d |
775.4±0.4 | 1+ | 1− | 0 | 0 | 0 | ~4.5×10−24[d] | π± + π0 |
Neutral rho meson[4] | ρ0 (770) |
Self | \( \mathrm {\tfrac {u{\bar {u}}-d{\bar {d}}}{\sqrt {2}}} \, \) | 775.49±0.34 | 1+ | 1−− | 0 | 0 | 0 | ~4.5×10−24[d] | π+ + π− |
Notes
There should be a small mass difference between the ρ+ and the ρ0
that can be attributed to the electromagnetic self-energy of the particle as well as a small effect due to isospin breaking arising from the light quark masses; however, the current experimental limit is that this mass difference is less than 0.7 MeV.
Neutral rho mesons can decay to a pair of electrons or muons which occurs with a branching ratio of 5×10−5. This decay of the neutral rho to leptons can be interpreted as a mixing between the photon and rho. In principle the charged rho mesons mix with the weak vector bosons and can lead to decay to an electron or muon plus a neutrino; however, this has never been observed.
The exact value depends on the method used. See the given reference for detail.
PDG reports the resonance width (Γ). Here the conversion τ = ħ⁄Γ is given instead.
References
De Rújula, A.; Georgi, Howard; Glashow, S. L. (1975-07-01). "Hadron masses in a gauge theory". Physical Review D. American Physical Society (APS). 12 (1): 147–162. doi:10.1103/physrevd.12.147. ISSN 0556-2821.
Georgi, Howard (1990). "Vector realization of chiral symmetry". Nuclear Physics B. Elsevier BV. 331 (2): 311–330. doi:10.1016/0550-3213(90)90210-5. ISSN 0550-3213.
C. Amsler et al. (2008): Quark Model
C. Amsler et al. (2008): Particle listings –
ρ
vte
Particles in physics
Elementary
Fermions
Quarks
Up (quark antiquark) Down (quark antiquark) Charm (quark antiquark) Strange (quark antiquark) Top (quark antiquark) Bottom (quark antiquark)
Leptons
Electron Positron Muon Antimuon Tau Antitau Electron neutrino Electron antineutrino Muon neutrino Muon antineutrino Tau neutrino Tau antineutrino
Bosons
Gauge
Scalar
Hypothetical
Superpartners
Gauginos
Others
Axino Chargino Higgsino Neutralino Sfermion (Stop squark)
Others
Axion Curvaton Dilaton Dual graviton Graviphoton Graviton Inflaton Leptoquark Magnetic monopole Majoron Majorana fermion Dark photon Planck particle Preon Sterile neutrino Tachyon W′ and Z′ bosons X and Y bosons
Composite
Hadrons
Baryons
Nucleon
Proton Antiproton Neutron Antineutron Delta baryon Lambda baryon Sigma baryon Xi baryon Omega baryon
Mesons
Pion Rho meson Eta and eta prime mesons Phi meson J/psi meson Omega meson Upsilon meson Kaon B meson D meson Quarkonium
Exotic hadrons
Others
Atomic nuclei Atoms Exotic atoms
Positronium Muonium Tauonium Onia Pionium Superatoms Molecules
Hypothetical
Baryons
Hexaquark Heptaquark Skyrmion
Mesons
Others
Mesonic molecule Pomeron Diquark R-hadron
Anyon Davydov soliton Dropleton Exciton Hole Magnon Phonon Plasmaron Plasmon Polariton Polaron Roton Trion
Lists
Baryons Mesons Particles Quasiparticles Timeline of particle discoveries
Related
History of subatomic physics
timeline Standard Model
mathematical formulation Subatomic particles Particles Antiparticles Nuclear physics Eightfold way
Quark model Exotic matter Massless particle Relativistic particle Virtual particle Wave–particle duality Particle chauvinism
Wikipedia books
Hadronic Matter Particles of the Standard Model Leptons Quarks
Hellenica World - Scientific Library
Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License