ART

Green–Schwarz (GS) formalism (named after Michael Green and John H. Schwarz)[1][2][3] is an attempt to introduce fermions in string theory. The theory is equivalent to RNS formalism which has been GSO projected. This theory is very hard to quantize, being straightforward to quantize only in light cone gauge.[4] A covariant quantization of spinning string, maintaining space-time supersymmetry manifest, is possible in a formalism inspired on the GS formalism, known as pure spinor formalism.[5]
See also

Supersymmetry
RNS formalism

Notes

M. B. Green, J. H. Schwarz, J. H., "Supersymmetrical Dual String Theory," Nuclear Physics B181 (1981), 502–530.
M. B. Green, J. H. Schwarz, J. H., "Supersymmetrical Dual String Theory (II): Vertices and Trees," Nuclear Physics B198 (1982), 252–268.
M. B. Green, J. H. Schwarz, J. H., "Supersymmetrical Dual String Theory (III): Loops and Renormalization," Nuclear Physics B198 (1982), 441–460.
Green, Michael B., and John H. Schwarz. "Covariant description of superstrings." Dynamical Groups and Spectrum Generating Algebras: (In 2 Volumes). 1988. 885-888.

N. Bekovits, "Super-Poincaré covariant quantization of the superstring." Journal of High Energy Physics 2000.04 (2000): 018.

vte

String theory
Background

Strings History of string theory
First superstring revolution Second superstring revolution String theory landscape


Calabi-Yau-alternate

Theory

Nambu–Goto action Polyakov action Bosonic string theory Superstring theory
Type I string Type II string
Type IIA string Type IIB string Heterotic string N=2 superstring F-theory String field theory Matrix string theory Non-critical string theory Non-linear sigma model Tachyon condensation RNS formalism GS formalism

String duality

T-duality S-duality U-duality Montonen–Olive duality

Particles and fields

Graviton Dilaton Tachyon Ramond–Ramond field Kalb–Ramond field Magnetic monopole Dual graviton Dual photon

Branes

D-brane NS5-brane M2-brane M5-brane S-brane Black brane Black holes Black string Brane cosmology Quiver diagram Hanany–Witten transition

Conformal field theory

Virasoro algebra Mirror symmetry Conformal anomaly Conformal algebra Superconformal algebra Vertex operator algebra Loop algebra Kac–Moody algebra Wess–Zumino–Witten model

Gauge theory

Anomalies Instantons Chern–Simons form Bogomol'nyi–Prasad–Sommerfield bound Exceptional Lie groups (G2, F4, E6, E7, E8) ADE classification Dirac string p-form electrodynamics

Geometry

Kaluza–Klein theory Compactification Why 10 dimensions? Kähler manifold Ricci-flat manifold
Calabi–Yau manifold Hyperkähler manifold
K3 surface G2 manifold Spin(7)-manifold Generalized complex manifold Orbifold Conifold Orientifold Moduli space Hořava–Witten domain wall K-theory (physics) Twisted K-theory

Supersymmetry

Supergravity Superspace Lie superalgebra Lie supergroup

Holography

Holographic principle AdS/CFT correspondence

M-theory

Matrix theory Introduction to M-theory

String theorists

Aganagić Arkani-Hamed Atiyah Banks Berenstein Bousso Cleaver Curtright Dijkgraaf Distler Douglas Duff Ferrara Fischler Friedan Gates Gliozzi Gopakumar Green Greene Gross Gubser Gukov Guth Hanson Harvey Hořava Gibbons Kachru Kaku Kallosh Kaluza Kapustin Klebanov Knizhnik Kontsevich Klein Linde Maldacena Mandelstam Marolf Martinec Minwalla Moore Motl Mukhi Myers Nanopoulos Năstase Nekrasov Neveu Nielsen van Nieuwenhuizen Novikov Olive Ooguri Ovrut Polchinski Polyakov Rajaraman Ramond Randall Randjbar-Daemi Roček Rohm Scherk Schwarz Seiberg Sen Shenker Siegel Silverstein Sơn Staudacher Steinhardt Strominger Sundrum Susskind 't Hooft Townsend Trivedi Turok Vafa Veneziano Verlinde Verlinde Wess Witten Yau Yoneya Zamolodchikov Zamolodchikov Zaslow Zumino Zwiebach

Physics Encyclopedia

World

Index

Hellenica World - Scientific Library

Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License