- Art Gallery -

The inflaton field is a hypothetical scalar field which is conjectured to have driven cosmic inflation in the very early universe.[1][2][3] The field, originally postulated by Alan Guth,[1] provides a mechanism by which a period of rapid expansion from 10−35 to 10−34 seconds after the initial expansion can be generated, forming a universe consistent with observed spatial isotropy and homogeneity.

Cosmological inflation
Main article: Inflation (cosmology)

The basic[ model of inflation proceeds in three phases:[4]

Expanding vacuum state with high potential energy
Phase transition to true vacuum
Slow roll and reheating

Expanding vacuum state with high potential energy

In quantum field theory, a vacuum state or vacuum is a state of quantum fields which is at locally minimal potential energy. Quantum particles are excitations which deviate from a minimal potential energy state, therefore a vacuum state has no particles in it. Depending on the specifics of a quantum field theory, it can have more than one vacuum state. Different vacua, despite all "being empty" (having no particles), will generally have different vacuum energy. Quantum field theory stipulates that the pressure of the vacuum energy is always negative and equal in magnitude to its energy density.

Inflationary theory postulates that there is a vacuum state with very large vacuum energy, caused by a non-zero vacuum expectation value of the inflaton field. Any region of space in this state will rapidly expand. Even if initially it is not empty (contains some particles), very rapid exponential expansion dilutes particle density to essentially zero.
Phase transition to true vacuum

Inflationary theory further postulates that this "inflationary vacuum" state is not the state with globally lowest energy; rather, it is a "false vacuum", also known as a metastable state.

For each observer in any chosen point of space, false vacuum eventually tunnels into a state with the same potential energy, but which is not a vacuum (it is not at a local minimum of the potential energy—it "can decay"). This state can be seen as a true vacuum, filled with a large number of inflaton particles. However, the rate of expansion of the true vacuum does not change at that moment: Only its exponential character changes to much slower expansion of the FLRW metric. This ensures that expansion rate precisely matches the energy density.
Slow roll and reheating

In true vacuum, inflaton particles decay, eventually giving rise to the observed Standard Model particles. The shape of the potential energy function near "tunnel exit" from false vacuum state must have a shallow slope, otherwise particle production will be confined to the boundary of expanding true vacuum bubble, which contradicts observation (our Universe is not built of huge completely void bubbles). In other words, the quantum state should "roll to the bottom slowly".

When complete, the decay of inflaton particles fills the space with hot and dense Big Bang plasma.
Field quanta

Just like every other quantum field, excitations of the inflaton field are expected to be quantized. The field quanta of the inflaton field are known as inflatons. Depending on the modeled potential energy density, the inflaton field's ground state might, or might not, be zero.

The term inflaton follows the typical style of other quantum particles’ names – such as photon, gluon, boson, and fermion – deriving from the word inflation. The term was first used in a paper by Nanopoulos, Olive, and Srednicki (1983).[5] The nature of the inflaton field is currently not known. One of the obstacles for narrowing its properties down is that current quantum theory is not able to correctly predict the observed vacuum energy, based on the particle content of a chosen theory (see vacuum catastrophe).

Atkins (2012) suggested that it is possible that no new field is necessary – that a modified version of the Higgs field could function as an inflaton.[6]
Non-minimally coupled inflation

Non-minimally coupled inflation is an inflationary model in which the constant which couples gravity to the inflaton field is not small. The coupling constant is usually represented by \( \xi (Xi) \), which features in the action (constructed by modifying the Einstein–Hilbert action):[7]:1–2

\( {\displaystyle S=\int d^{4}x{\sqrt {-g}}\left[{\tfrac {1}{2}}m_{P}^{2}R-{\tfrac {1}{2}}\partial ^{\mu }\phi \partial _{\mu }\phi -V(\phi )-{\tfrac {1}{2}}\xi R\phi ^{2}\right]}, \)

with \( \xi \) representing the strength of the interaction between R and \( \phi \), which respectively relate to the curvature of space and the magnitude of the inflaton field.
See also

Hubble's law
Big Bang
Cosmological constant

References

Guth, Alan H. (1997). The Inflationary Universe: The Quest for a New Theory of Cosmic Origins. Basic Books. pp. 233–234. ISBN 978-0201328400.
Steinhardt, Paul J.; Turok, Neil (2007). Endless Universe: Beyond the Bang. Random House. p. 114. ISBN 978-0-7679-1501-4.
Steinhardt, Paul J. (April 2011). "Inflation Debate: Is the theory at the heart of modern cosmology deeply flawed?" (PDF). Scientific American.
Tsujikawa, Shinji (2003). "Introductory review of cosmic inflation". arXiv:hep-ph/0304257.
Nanopoulos, D.V.; Olive, K.A.; Srednicki, M. (1983). "After primordial inflation" (PDF). Physics Letters B. 127 (1–2): 30–34. Bibcode:1983PhLB..127...30N. doi:10.1016/0370-2693(83)91624-6.
Atkins, Michael (March 2012). "Could the Higgs boson be the inflaton?" (PDF).

Hertzberg, Mark P (2010). "On Inflation with Non-minimal Coupling". Journal of High Energy Physics. 2010 (11): 23. arXiv:1002.2995. Bibcode:2010JHEP...11..023H. doi:10.1007/JHEP11(2010)023. S2CID 54886582.

vte

Particles in physics
Elementary
Fermions
Quarks

Up (quark antiquark) Down (quark antiquark) Charm (quark antiquark) Strange (quark antiquark) Top (quark antiquark) Bottom (quark antiquark)

Leptons

Electron Positron Muon Antimuon Tau Antitau Electron neutrino Electron antineutrino Muon neutrino Muon antineutrino Tau neutrino Tau antineutrino

Bosons
Gauge

Photon Gluon W and Z bosons

Scalar

Higgs boson

Ghost fields

Faddeev–Popov ghosts

Hypothetical
Superpartners
Gauginos

Gluino Gravitino Photino

Others

Axino Chargino Higgsino Neutralino Sfermion (Stop squark)

Others

Axion Curvaton Dilaton Dual graviton Graviphoton Graviton Inflaton Leptoquark Magnetic monopole Majoron Majorana fermion Dark photon Planck particle Preon Sterile neutrino Tachyon W′ and Z′ bosons X and Y bosons

Composite
Hadrons
Baryons

Nucleon
Proton Antiproton Neutron Antineutron Delta baryon Lambda baryon Sigma baryon Xi baryon Omega baryon

Mesons

Pion Rho meson Eta and eta prime mesons Phi meson J/psi meson Omega meson Upsilon meson Kaon B meson D meson Quarkonium

Exotic hadrons

Tetraquark Pentaquark

Others

Atomic nuclei Atoms Exotic atoms
Positronium Muonium Tauonium Onia Pionium Superatoms Molecules

Hypothetical
Baryons

Hexaquark Heptaquark Skyrmion

Mesons

Glueball Theta meson T meson

Others

Mesonic molecule Pomeron Diquark R-hadron

Quasiparticles

Anyon Davydov soliton Dropleton Exciton Hole Magnon Phonon Plasmaron Plasmon Polariton Polaron Roton Trion

Lists

Baryons Mesons Particles Quasiparticles Timeline of particle discoveries

Related

History of subatomic physics
timeline Standard Model
mathematical formulation Subatomic particles Particles Antiparticles Nuclear physics Eightfold way
Quark model Exotic matter Massless particle Relativistic particle Virtual particle Wave–particle duality Particle chauvinism

Wikipedia books

Hadronic Matter Particles of the Standard Model Leptons Quarks

Physics Encyclopedia

World

Index

Hellenica World - Scientific Library

Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License