ART

The Cryogenic Rare Event Search with Superconducting Thermometers (CRESST) is a collaboration of European experimental particle physics groups involved in the construction of cryogenic detectors for direct dark matter searches. The participating institutes are the Max Planck Institute for Physics (Munich), Technical University of Munich, University of Tübingen (Germany), University of Oxford (Great Britain) and the Istituto Nazionale di Fisica Nucleare (INFN, Italy).[1]

The CRESST collaboration currently runs an array of cryogenic detectors in the underground laboratory of the Gran Sasso National Laboratory. The modular detectors used by CRESST facilitate discrimination of background radiation events by the simultaneous measurement of phonon and photon signals from scintillating calcium tungstate crystals. By cooling the detectors to temperatures of a few millikelvin, the excellent discrimination and energy resolution of the detectors allows identification of rare particle events.

CRESST-I took data in 2000 using sapphire detectors with tungsten thermometers. CRESST-II uses CaWO4 crystal scintillating calorimeters. It was prototyped in 2004 and had a 47.9 kg-day commissioning run in 2007 and operated 2009 to 2011. CRESST-II Phase 1 experiment observed excess events above known background that could be understood to constitute a dark matter signal. However, later analysis showed that these excess events were due to a previously uncounted for excess of background from the detector itself and not a true signal from dark matter.[2] The source of the excess background in the detector was removed for Phase 2.

Phase 2 has a new CaWO4 crystal with better radiopurity, improved detectors, and significantly reduced background. It began July 2013 to explore excess signals in the prior run. The results of Phase 2 showed no signal above expected background, proving that the result of Phase 1 had indeed been due to excess background by components of the detector.[2]

CRESST-II first detected the alpha decay of tungsten-180 (180W).[3] CRESST-II phase 1 full results were published in 2012.[4] New phase 2 results have been presented on July 2014 [5] with a limit on spin-independent WIMP-nucleon scattering for WIMP masses below 3 GeV/c2.

In 2015 the CRESST detectors were upgraded by a sensitivity factor of 100 allowing dark-matter particles with a mass around that of a proton to be detected.[6]

In 2019, the team reported results of the first phase of CRESST-III, which ran from 2016 to 2018. CRESST-III used a single 23.6-g CaWO4 detector with a lowered energy threshold of 30.1 eV, about 1/10 that of CRESST-II. This allows the detection of WIMPs as light as 0.16 GeV/c2, slightly heavier than a pion. Despite many events from the electron capture decay of 179Ta, there was an unexplained excess of events imparting less than 200 eV.[7]

The EURECA experiment is a planned successor to CRESST, ultimately aiming to run an array of detectors with a total mass of around 1 tonne.
References

"CRESST: Home".
Davis, Jonathan (2015). "The Past and Future of Light Dark Matter Direct Detection". Int. J. Mod. Phys. A. 30 (15): 1530038.arXiv:1506.03924. Bibcode:2015IJMPA..3030038D. doi:10.1142/S0217751X15300380.
Lang, Raphael; Seidel, Wolfgang (2009). "Search for dark matter with CRESST". New Journal of Physics. 11 (10): 105017. doi:10.1088/1367-2630/11/10/105017.
Angloher, G; Bauer, M; Bavykina, I; Bento, A; Bucci, C; Ciemniak, C; Deuter, G; von Feilitzsch, F; Hauff, D; Huff, P; Isaila, C; Jochum, J; Kiefer, M; Kimmerle, M; Lanfranchi, J. -C; Petricca, F; Pfister, S; Potzel, W; Pröbst, F; Reindl, F; Roth, S; Rottler, K; Sailer, C; Schäffner, K; Schmaler, J; Scholl, S; Seidel, W; Sivers, M. v; Stodolsky, L; et al. (Apr 12, 2012). "Results from 730 kg days of the CRESST-II Dark Matter search". European Physical Journal C. 72 (4): 1971.arXiv:1109.0702. Bibcode:2012EPJC...72.1971A. doi:10.1140/epjc/s10052-012-1971-8.
The CRESST Collaboration, Results on low mass WIMPs using an upgraded CRESST-II detector, https://arxiv.org/abs/1407.3146
"New detectors allow search for lightweight dark matter particles". PhyOrg. September 2015. Retrieved 14 September 2015.

A. H. Abdelhameed et al. (CRESST Collab.) (31 March 2019). "First results from the CRESST-III low-mass dark matter program". Physical Review D. 100 (10): 102002.arXiv:1904.00498. doi:10.1103/PhysRevD.100.102002.

External links

CRESST Official Website
CRESST Publication 2004
CRESST Publication 2011
Gran Sasso National Laboratory

vte

Dark matter
Forms of
dark matter

Baryonic dark matter Cold dark matter Hot dark matter Light dark matter Mixed dark matter Warm dark matter Self-interacting dark matter Scalar field dark matter Primordial black holes


Hypothetical particles

Axino Axion Dark photon Holeum LSP Minicharged particle Neutralino Sterile neutrino SIMP WIMP

Theories
and objects

Cuspy halo problem Dark fluid Dark galaxy Dark globular cluster Dark matter halo Dark radiation Dark star Dwarf galaxy problem Halo mass function Mass dimension one fermions Massive compact halo object Mirror matter Navarro–Frenk–White profile Scalar field dark matter

Search
experiments
Direct
detection

ADMX ANAIS ArDM CDEX CDMS CLEAN CoGeNT COSINE COUPP CRESST CUORE D3 DAMA/LIBRA DAMA/NaI DAMIC DarkSide DARWIN DEAP DM-Ice DMTPC DRIFT EDELWEISS EURECA KIMS LUX LZ MACRO MIMAC NAIAD NEWAGE NEWS-G PandaX PICASSO PICO ROSEBUD SABRE SIMPLE TREX-DM UKDMC WARP XENON XMASS ZEPLIN

Indirect
detection

AMS-02 ANTARES ATIC CALET CAST DAMPE Fermi HAWC HESS IceCube MAGIC MOA OGLE PAMELA VERITAS

Other projects

MultiDark PVLAS

Potential dark galaxies

HE0450-2958 HVC 127-41-330 Smith's Cloud VIRGOHI21

Related

Antimatter Dark energy Exotic matter Galaxy formation and evolution Illustris project Imaginary mass Negative mass UniverseMachine

Physics Encyclopedia

World

Index

Hellenica World - Scientific Library

Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License