Symbiotic novae are slow irregular eruptive variable stars with very slow nova-like outbursts with an amplitude of between 9 and 11 magnitudes. The symbiotic nova remains at maximum for one or a few decades, and then declines towards its original luminosity. Variables of this type are double star systems with one red giant, which probably is a Mira variable,[1] and one white dwarf, with markedly contrasting spectra and whose proximity and mass characteristics indicate it as a symbiotic star. The red giant fills its Roche lobe so that matter is transferred to the white dwarf and accumulates until a nova-like outburst occurs, caused by ignition of thermonuclear fusion. The temperature at maximum is estimated to rise up to 200,000 K, similar to the energy source of novae, but dissimilar to the dwarf novae. The slow luminosity increase would then be simply due to time needed for growth of the ionization front in the outburst.[2]
It is believed that the white dwarf component of a symbiotic nova remains below the Chandrasekhar limit, so that it remains a white dwarf after its outburst.[2]
One example of a symbiotic nova is V1016 Cygni, whose outburst in 1971–2007 clearly indicated a thermonuclear explosion.[3] Other examples are HM Sagittae and RR Telescopii.[1]
See also
Dwarf nova
Nova
Supernova
References
Bryan, Greg L.; Kwok, Sun (1991). "Energy distributions of symbiotic novae" (PDF). The Astrophysical Journal. 368: 252–260. Bibcode:1991ApJ...368..252B. doi:10.1086/169688.
MURSET U.; NUSSBAUMER H. (1994). "Temperatures and luminosities of symbiotic novae". Astronomy & Astrophysics. 282: 586–604. Bibcode:1994A&A...282..586M.
Photometric and Spectroscopic Evolution of the Symbiotic Nova ... Archived 2016-03-03 at the Wayback Machine
External links
SEAL P. (1990). "A discussion on the classification and evolution of symbiotic stars". Astrophys. Space Sci. 174 (2): 321. Bibcode:1990Ap&SS.174..321S. doi:10.1007/BF00642518.
Friedjung, Michael (1993). "Models of symbiotic stars". NASA: 647–662. Bibcode:1993NASSP.507..647F.
vte
White dwarf
Formation
Chandrasekhar limit PG 1159 star Stellar evolution Hertzsprung–Russell diagram Mira variable
Fate
Black dwarf Type Ia supernova
Candidates Neutron star
Pulsar Magnetar Related links Stellar black hole
Related links Compact star
Quark star Exotic star Extreme helium star Subdwarf B star Helium planet
In binary
systems
Nova
Remnant List Dwarf nova Symbiotic nova Cataclysmic variable star
AM CVn star Polar Intermediate polar X-ray binary
Super soft X-ray source Binary pulsar
X-ray pulsar List Helium flash Carbon detonation
Properties
Pulsating Urca process Electron-degenerate matter Quasi-periodic oscillations
Related
Planetary nebula
List RAMBOs White dwarf luminosity function Timeline of white dwarfs, neutron stars, and supernovae
List-Class article List Category Category Commons page WikiCommons
vte
Accretion Molecular cloud Bok globule Young stellar object
Protostar Pre-main-sequence Herbig Ae/Be T Tauri FU Orionis Herbig–Haro object Hayashi track Henyey track
Main sequence Red-giant branch Horizontal branch
Red clump Asymptotic giant branch
super-AGB Blue loop Protoplanetary nebula Planetary nebula PG1159 Dredge-up OH/IR Instability strip Luminous blue variable Blue straggler Stellar population Supernova Superluminous supernova / Hypernova
Early Late Main sequence
O B A F G K M Brown dwarf WR OB Subdwarf
O B Subgiant Giant
Blue Red Yellow Bright giant Supergiant
Blue Red Yellow Hypergiant
Yellow Carbon
S CN CH White dwarf Chemically peculiar
Am Ap/Bp HgMn Helium-weak Barium Extreme helium Lambda Boötis Lead Technetium Be
Shell B[e]
White dwarf
Helium planet Black dwarf Neutron
Radio-quiet Pulsar
Binary X-ray Magnetar Stellar black hole X-ray binary
Burster
Hypothetical
Blue dwarf Green Black dwarf Exotic
Boson Electroweak Strange Preon Planck Dark Dark-energy Quark Q Black Gravastar Frozen Quasi-star Thorne–Żytkow object Iron Blitzar
Deuterium burning Lithium burning Proton–proton chain CNO cycle Helium flash Triple-alpha process Alpha process Carbon burning Neon burning Oxygen burning Silicon burning S-process R-process Fusor Nova
Symbiotic Remnant Luminous red nova
Structure
Core Convection zone
Microturbulence Oscillations Radiation zone Atmosphere
Photosphere Starspot Chromosphere Stellar corona Stellar wind
Bubble Bipolar outflow Accretion disk Asteroseismology
Helioseismology Eddington luminosity Kelvin–Helmholtz mechanism
Properties
Designation Dynamics Effective temperature Luminosity Kinematics Magnetic field Absolute magnitude Mass Metallicity Rotation Starlight Variable Photometric system Color index Hertzsprung–Russell diagram Color–color diagram
Star systems
Binary
Contact Common envelope Eclipsing Symbiotic Multiple Cluster
Open Globular Super Planetary system
Earth-centric
observations
Sun
Solar System Sunlight Pole star Circumpolar Constellation Asterism Magnitude
Apparent Extinction Photographic Radial velocity Proper motion Parallax Photometric-standard
Lists
Proper names
Arabic Chinese Extremes Most massive Highest temperature Lowest temperature Largest volume Smallest volume Brightest
Historical Most luminous Nearest
Nearest bright With exoplanets Brown dwarfs White dwarfs Milky Way novae Supernovae
Candidates Remnants Planetary nebulae Timeline of stellar astronomy
Related articles
Substellar object
Brown dwarf Sub-brown dwarf Planet Galactic year Galaxy Guest Gravity Intergalactic Planet-hosting stars Tidal disruption event
Hellenica World - Scientific Library
Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License