An electroweak star is a theoretical type of exotic star, whereby the gravitational collapse of the star is prevented by radiation pressure resulting from electroweak burning, that is, the energy released by conversion of quarks to leptons through the electroweak force. This process occurs in a volume at the star's core approximately the size of an apple, containing about two Earth masses[1] and reaching temperatures on the order of 1015 K.[2]
Formation
The stage of life of a star that produces an electroweak star is theorized to occur after a supernova collapse. Electroweak stars are denser than quark stars, and may form when quark degeneracy pressure is no longer able to withstand gravitational attraction, but may still be withstood by electroweak burning radiation pressure. This phase of a star's life may last upwards of 10 million years.[1]
The energy output of an electroweak star is limited by the quark supply rate, which is dictated by gravitational collapse. Each interaction converts nine quarks into three anti-leptons, violating conservation of baryon and lepton number while preserving B−L, generating around 300 GeV per interaction. The energy diffuses out of the star as a mixture of neutrinos and photons. Electroweak stars could be identified through the equal number of neutrinos emitted of all three generations, taking into account neutrino oscillation.[2]
See also
Electroweak force
Chiral anomaly
Sphaleron
Quark nova
Quark star
Preon star
Lepton
Quark
Degenerate matter
Degeneracy pressure
References
Shiga, D. (4 January 2010). "Exotic stars may mimic big bang". New Scientist. Retrieved 18 February 2010.
Dai, De-Chang; Lue, Arthur; Starkman, Glenn; Stojkovic, Dejan (6 December 2010). "Electroweak stars: How nature may capitalize on the standard model's ultimate fuel". Journal of Cosmology and Astroparticle Physics. 2010 (12): 004.arXiv:0912.0520. Bibcode:2010JCAP...12..004D. doi:10.1088/1475-7516/2010/12/004. ISSN 1475-7516. S2CID 118417017.
Sources
"Theorists Propose a New Way to Shine – And a New Kind of Star: 'Electroweak'". ScienceDaily. 15 December 2009. Retrieved 16 December 2009.
"A New Way To Shine, A New Kind Of Star". SpaceDaily. 16 December 2009. Retrieved 16 December 2009.
"Theorists propose a new way to shine — and a new kind of star". Astronomy Magazine. 15 December 2009. Retrieved 16 December 2009.
"Astronomers Predict New Class of 'Electroweak' Star". Technology Review. 10 December 2009. Retrieved 16 December 2009.
Further reading
Dai, De-Chang; Lue, Arthur; Starkman, Glenn; Stojkovic, Dejan (2010). "Electroweak stars: How nature may capitalize on the standard model's ultimate fuel". Journal of Cosmology and Astroparticle Physics. 2010 (12): 004.arXiv:0912.0520. Bibcode:2010JCAP...12..004D. doi:10.1088/1475-7516/2010/12/004. S2CID 118417017.
External links
Vieru, Tudor (15 December 2009). "New type of cosmic objects: Electroweak stars". Softpedia. Retrieved 16 December 2009.
vte
Accretion Molecular cloud Bok globule Young stellar object
Protostar Pre-main-sequence Herbig Ae/Be T Tauri FU Orionis Herbig–Haro object Hayashi track Henyey track
Main sequence Red-giant branch Horizontal branch
Red clump Asymptotic giant branch
super-AGB Blue loop Protoplanetary nebula Planetary nebula PG1159 Dredge-up OH/IR Instability strip Luminous blue variable Blue straggler Stellar population Supernova Superluminous supernova / Hypernova
Early Late Main sequence
O B A F G K M Brown dwarf WR OB Subdwarf
O B Subgiant Giant
Blue Red Yellow Bright giant Supergiant
Blue Red Yellow Hypergiant
Yellow Carbon
S CN CH White dwarf Chemically peculiar
Am Ap/Bp HgMn Helium-weak Barium Extreme helium Lambda Boötis Lead Technetium Be
Shell B[e]
White dwarf
Helium planet Black dwarf Neutron
Radio-quiet Pulsar
Binary X-ray Magnetar Stellar black hole X-ray binary
Burster
Hypothetical
Blue dwarf Green Black dwarf Exotic
Boson Electroweak Strange Preon Planck Dark Dark-energy Quark Q Black Gravastar Frozen Quasi-star Thorne–Żytkow object Iron Blitzar
Deuterium burning Lithium burning Proton–proton chain CNO cycle Helium flash Triple-alpha process Alpha process Carbon burning Neon burning Oxygen burning Silicon burning S-process R-process Fusor Nova
Symbiotic Remnant Luminous red nova
Structure
Core Convection zone
Microturbulence Oscillations Radiation zone Atmosphere
Photosphere Starspot Chromosphere Stellar corona Stellar wind
Bubble Bipolar outflow Accretion disk Asteroseismology
Helioseismology Eddington luminosity Kelvin–Helmholtz mechanism
Properties
Designation Dynamics Effective temperature Luminosity Kinematics Magnetic field Absolute magnitude Mass Metallicity Rotation Starlight Variable Photometric system Color index Hertzsprung–Russell diagram Color–color diagram
Star systems
Binary
Contact Common envelope Eclipsing Symbiotic Multiple Cluster
Open Globular Super Planetary system
Earth-centric
observations
Sun
Solar System Sunlight Pole star Circumpolar Constellation Asterism Magnitude
Apparent Extinction Photographic Radial velocity Proper motion Parallax Photometric-standard
Lists
Proper names
Arabic Chinese Extremes Most massive Highest temperature Lowest temperature Largest volume Smallest volume Brightest
Historical Most luminous Nearest
Nearest bright With exoplanets Brown dwarfs White dwarfs Milky Way novae Supernovae
Candidates Remnants Planetary nebulae Timeline of stellar astronomy
Related articles
Substellar object
Brown dwarf Sub-brown dwarf Planet Galactic year Galaxy Guest Gravity Intergalactic Planet-hosting stars Tidal disruption event
vte
Supernovae
Classes
Type Ia Type Ib and Ic Type II (IIP, IIL, IIn, and IIb) Hypernova Superluminous Pair-instability
Supernova&galaxia.png
G299-Remnants-SuperNova-Type1a-20150218.jpg
Physics of
Calcium-rich Carbon detonation Foe Near-Earth Phillips relationship Nucleosynthesis
P-process R-process Neutrinos
Related
Imposter
pulsational pair-instability Failed Gamma-ray burst Kilonova Luminous red nova Nova Pulsar kick Quark-nova Symbiotic nova
Progenitors
Hypergiant
yellow Luminous blue variable Supergiant
blue red yellow White dwarf
related links Wolf–Rayet star
Remnants
Supernova remnant
Pulsar wind nebula Neutron star
pulsar magnetar related links Stellar black hole
related links Compact star
quark star exotic star Zombie star Local Bubble Superbubble
Orion–Eridanus
Discovery
Guest star History of supernova observation Timeline of white dwarfs, neutron stars, and supernovae
Lists
Candidates Notable Massive stars Most distant Remnants In fiction
Notable
Barnard's Loop Cassiopeia A Crab
Crab Nebula iPTF14hls Tycho's Kepler's SN 1987A SN 185 SN 1006 SN 2003fg Remnant G1.9+0.3 SN 2007bi SN 2011fe SN 2014J SN Refsdal Vela Remnant
Research
ASAS-SN Calán/Tololo Survey High-Z Supernova Search Team Katzman Automatic Imaging Telescope Monte Agliale Supernovae and Asteroid Survey Nearby Supernova Factory Sloan Supernova Survey Supernova/Acceleration Probe Supernova Cosmology Project SuperNova Early Warning System Supernova Legacy Survey Texas Supernova Search
Hellenica World - Scientific Library
Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License