The stellar atmosphere is the outer region of the volume of a star, lying above the stellar core, radiation zone and convection zone.
Overview
The stellar atmosphere is divided into several regions of distinct character:
The photosphere, which is the atmosphere's lowest and coolest layer, is normally its only visible part.[1] Light escaping from the surface of the star stems from this region and passes through the higher layers. The Sun's photosphere has a temperature in the 5,770 K to 5,780 K range.[2][3] Starspots, cool regions of disrupted magnetic field lie on the photosphere.[3]
Above the photosphere lies the chromosphere. This part of the atmosphere first cools down and then starts to heat up to about 10 times the temperature of the photosphere.
Above the chromosphere lies the transition region, where the temperature increases rapidly on a distance of only around 100 km.[4]
The outermost part of the stellar atmosphere is the corona, a tenuous plasma which has a temperature above one million Kelvin.[5] While all stars on the main sequence feature transition regions and coronae, not all evolved stars do so. It seems that only some giants, and very few supergiants, possess coronae. An unresolved problem in stellar astrophysics is how the corona can be heated to such high temperatures. The answer lies in magnetic fields, but the exact mechanism remains unclear.[6]
During a total solar eclipse, the photosphere of the Sun is obscured, revealing its atmosphere's other layers.[1] Observed during eclipse, the Sun's chromosphere appears (briefly) as a thin pinkish arc,[7] and its corona is seen as a tufted halo. The same phenomenon in eclipsing binaries can make the chromosphere of giant stars visible.[8]
See also
Cecilia Payne-Gaposchkin, who first proposed the presently-accepted composition of stellar atmospheres
Notes
""Beyond the Blue Horizon" – A Total Solar Eclipse Chase". 1999-08-05. Retrieved 2010-05-21. "On ordinary days, the corona is hidden by the blue sky, since it is about a million times fainter than the layer of the sun we see shining every day, the photosphere."
Mariska, J.T. (1992). The solar transition region. Cambridge Astrophysics Series. Cambridge University Press. ISBN 978-0-521-38261-8.
Lang, K.R. (September 2006). "5.1 MAGNETIC FIELDS IN THE VISIBLE PHOTOSPHERE". Sun, earth, and sky (2nd ed.). Springer. p. 81. ISBN 978-0-387-30456-4. "this opaque layer is the photosphere, the level of the Sun from which we get our light and heat"
Mariska, J.T. (1992). The solar transition region. p. 60. ISBN 978-0-521-38261-8. "100 km suggested by average models"
R.C. Altrock (2004). "The Temperature of the Low Corona During Solar Cycles 21–23". Solar Physics. 224 (1–2): 255. Bibcode:2004SoPh..224..255A. doi:10.1007/s11207-005-6502-4. S2CID 121468084.
"The Sun's Corona – Introduction". NASA. Retrieved 2010-05-21. "Now most scientists believe that the heating of the corona is linked to the interaction of the magnetic field lines."
Lewis, J.S. (2004-02-23). Physics and chemistry of the solar system (Second ed.). Elsevier Academic Press. p. 87. ISBN 978-0-12-446744-6. "The dominant color is influenced by the Balmer radiation of atomic hydrogen"
Griffin, R.E. (2007-08-27). Hartkopft, W.I.; Guinan, E.F. (eds.). Only Binary Stars Can Help Us Actually SEE a Stellar Chromosphere. Proceedings of the International Astronomical Union. 2 (1 ed.). Cambridge University Press. p. 460. doi:10.1017/S1743921307006163. ISBN 978-0-521-86348-3.
vte
The Sun
Internal structure
Core Radiation zone Tachocline Convection zone
The Sun by the Atmospheric Imaging Assembly of NASA's Solar Dynamics Observatory - 20100819.jpg
Atmosphere
Photosphere
Supergranulation Granule Faculae Sunspot
Chromosphere
Plage Spicule Moreton wave
Corona
Transition region Coronal hole Coronal loop Coronal mass ejection Prominence Helmet streamer Supra-arcade downflows
Variation
Solar cycle
List of solar cycles Solar maximum Solar minimum Wolf number Solar wind Flare Helioseismology
Heliosphere
Current sheet Termination shock Heliosheath Heliopause Bow shock
Related
Eclipse Heliophysics In culture
solar deities Solar activity Solar astronomy Solar dynamo Solar energy Solar neutrino Solar observation Solar phenomena Solar physics Solar System Solar telescope Solar time Space climate Space weather Standard solar model Star Sunlight radiation
Spectral class: G-type main-sequence star
vte
Atmospheres
Star
Sun
Toward the top of Earth's atmosphere
Exoplanet
HD 209458 b Kepler-7b
Planet
Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune
Dwarf planet
Ceres Pluto Makemake
Satellite
Moon Io Europa Ganymede Callisto Enceladus Dione Rhea Titan Triton
See also
Coma (cometary) Extraterrestrial atmosphere Stellar atmosphere
vte
Accretion Molecular cloud Bok globule Young stellar object
Protostar Pre-main-sequence Herbig Ae/Be T Tauri FU Orionis Herbig–Haro object Hayashi track Henyey track
Main sequence Red-giant branch Horizontal branch
Red clump Asymptotic giant branch
super-AGB Blue loop Protoplanetary nebula Planetary nebula PG1159 Dredge-up OH/IR Instability strip Luminous blue variable Blue straggler Stellar population Supernova Superluminous supernova / Hypernova
Early Late Main sequence
O B A F G K M Brown dwarf WR OB Subdwarf
O B Subgiant Giant
Blue Red Yellow Bright giant Supergiant
Blue Red Yellow Hypergiant
Yellow Carbon
S CN CH White dwarf Chemically peculiar
Am Ap/Bp HgMn Helium-weak Barium Extreme helium Lambda Boötis Lead Technetium Be
Shell B[e]
White dwarf
Helium planet Black dwarf Neutron
Radio-quiet Pulsar
Binary X-ray Magnetar Stellar black hole X-ray binary
Burster
Hypothetical
Blue dwarf Green Black dwarf Exotic
Boson Electroweak Strange Preon Planck Dark Dark-energy Quark Q Black Gravastar Frozen Quasi-star Thorne–Żytkow object Iron Blitzar
Deuterium burning Lithium burning Proton–proton chain CNO cycle Helium flash Triple-alpha process Alpha process Carbon burning Neon burning Oxygen burning Silicon burning S-process R-process Fusor Nova
Symbiotic Remnant Luminous red nova
Structure
Core Convection zone
Microturbulence Oscillations Radiation zone Atmosphere
Photosphere Starspot Chromosphere Stellar corona Stellar wind
Bubble Bipolar outflow Accretion disk Asteroseismology
Helioseismology Eddington luminosity Kelvin–Helmholtz mechanism
Properties
Designation Dynamics Effective temperature Luminosity Kinematics Magnetic field Absolute magnitude Mass Metallicity Rotation Starlight Variable Photometric system Color index Hertzsprung–Russell diagram Color–color diagram
Star systems
Binary
Contact Common envelope Eclipsing Symbiotic Multiple Cluster
Open Globular Super Planetary system
Earth-centric
observations
Sun
Solar System Sunlight Pole star Circumpolar Constellation Asterism Magnitude
Apparent Extinction Photographic Radial velocity Proper motion Parallax Photometric-standard
Lists
Proper names
Arabic Chinese Extremes Most massive Highest temperature Lowest temperature Largest volume Smallest volume Brightest
Historical Most luminous Nearest
Nearest bright With exoplanets Brown dwarfs White dwarfs Milky Way novae Supernovae
Candidates Remnants Planetary nebulae Timeline of stellar astronomy
Related articles
Substellar object
Brown dwarf Sub-brown dwarf Planet Galactic year Galaxy Guest Gravity Intergalactic Planet-hosting stars Tidal disruption event
Hellenica World - Scientific Library
Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License