A pre-main-sequence star (also known as a PMS star and PMS object) is a star in the stage when it has not yet reached the main sequence. Earlier in its life, the object is a protostar that grows by acquiring mass from its surrounding envelope of interstellar dust and gas. After the protostar blows away this envelope, it is optically visible, and appears on the stellar birthline in the Hertzsprung-Russell diagram. At this point, the star has acquired nearly all of its mass but has not yet started hydrogen burning (i.e. nuclear fusion of hydrogen). The star then contracts, its internal temperature rising until it begins hydrogen burning on the zero age main sequence. This period of contraction is the pre-main sequence stage.[1][2][3][4] An observed PMS object can either be a T Tauri star, if it has fewer than 2 solar masses (M☉), or else a Herbig Ae/Be star, if it has 2 to 8 M☉. Yet more massive stars have no pre-main-sequence stage because they contract too quickly as protostars. By the time they become visible, the hydrogen in their centers is already fusing and they are main-sequence objects.
The energy source of PMS objects is gravitational contraction, as opposed to hydrogen burning in main-sequence stars. In the Hertzsprung–Russell diagram, pre-main-sequence stars with more than 0.5 M☉ first move vertically downward along Hayashi tracks, then leftward and horizontally along Henyey tracks, until they finally halt at the main sequence. Pre-main-sequence stars with less than 0.5 M☉ contract vertically along the Hayashi track for their entire evolution.
PMS stars can be differentiated empirically from main-sequence stars by using stellar spectra to measure their surface gravity. A PMS object has a larger radius than a main-sequence star with the same stellar mass and thus has a lower surface gravity. Although they are optically visible, PMS objects are rare relative to those on the main sequence, because their contraction lasts for only 1 percent of the time required for hydrogen fusion. During the early portion of the PMS stage, most stars have circumstellar disks, which are the sites of planet formation.
See also
Protoplanetary disk
Protostar
Stellar birthline
Stellar evolution
Young stellar object
References
Richard B. Larson (10 September 2003). "The physics of star formation" (PDF). Reports on Progress in Physics. 66 (10): 1669–1673. arXiv:astro-ph/0306595. Bibcode:2003RPPh...66.1651L. doi:10.1088/0034-4885/66/10/r03. S2CID 18104309.
Neil F. Comins; William J. Kaufmann III (2011). Discovering the Universe. p. 350. ISBN 978-1-4292-5520-2.
Derek Ward-Thompson; Anthony P. Whitworth (2011). An Introduction to Star Formation. Cambridge University Press. p. 119. ISBN 978-1-107-62746-8.
Stahler, S. W.; Palla, F. (2004). The Formation of Stars. Weinheim: Wiley-VCH. ISBN 978-3-527-40559-6.
vte
Accretion Molecular cloud Bok globule Young stellar object
Protostar Pre-main-sequence Herbig Ae/Be T Tauri FU Orionis Herbig–Haro object Hayashi track Henyey track
Main sequence Red-giant branch Horizontal branch
Red clump Asymptotic giant branch
super-AGB Blue loop Protoplanetary nebula Planetary nebula PG1159 Dredge-up OH/IR Instability strip Luminous blue variable Blue straggler Stellar population Supernova Superluminous supernova / Hypernova
Early Late Main sequence
O B A F G K M Brown dwarf WR OB Subdwarf
O B Subgiant Giant
Blue Red Yellow Bright giant Supergiant
Blue Red Yellow Hypergiant
Yellow Carbon
S CN CH White dwarf Chemically peculiar
Am Ap/Bp HgMn Helium-weak Barium Extreme helium Lambda Boötis Lead Technetium Be
Shell B[e]
White dwarf
Helium planet Black dwarf Neutron
Radio-quiet Pulsar
Binary X-ray Magnetar Stellar black hole X-ray binary
Burster
Hypothetical
Blue dwarf Green Black dwarf Exotic
Boson Electroweak Strange Preon Planck Dark Dark-energy Quark Q Black Gravastar Frozen Quasi-star Thorne–Żytkow object Iron Blitzar
Deuterium burning Lithium burning Proton–proton chain CNO cycle Helium flash Triple-alpha process Alpha process Carbon burning Neon burning Oxygen burning Silicon burning S-process R-process Fusor Nova
Symbiotic Remnant Luminous red nova
Structure
Core Convection zone
Microturbulence Oscillations Radiation zone Atmosphere
Photosphere Starspot Chromosphere Stellar corona Stellar wind
Bubble Bipolar outflow Accretion disk Asteroseismology
Helioseismology Eddington luminosity Kelvin–Helmholtz mechanism
Properties
Designation Dynamics Effective temperature Luminosity Kinematics Magnetic field Absolute magnitude Mass Metallicity Rotation Starlight Variable Photometric system Color index Hertzsprung–Russell diagram Color–color diagram
Star systems
Binary
Contact Common envelope Eclipsing Symbiotic Multiple Cluster
Open Globular Super Planetary system
Earth-centric
observations
Sun
Solar System Sunlight Pole star Circumpolar Constellation Asterism Magnitude
Apparent Extinction Photographic Radial velocity Proper motion Parallax Photometric-standard
Lists
Proper names
Arabic Chinese Extremes Most massive Highest temperature Lowest temperature Largest volume Smallest volume Brightest
Historical Most luminous Nearest
Nearest bright With exoplanets Brown dwarfs White dwarfs Milky Way novae Supernovae
Candidates Remnants Planetary nebulae Timeline of stellar astronomy
Related articles
Substellar object
Brown dwarf Sub-brown dwarf Planet Galactic year Galaxy Guest Gravity Intergalactic Planet-hosting stars Tidal disruption event
vte
Star formation
Object classes
Interstellar medium Molecular cloud Bok globule Dark nebula Young stellar object Protostar T Tauri star Pre-main-sequence star Herbig Ae/Be star Herbig–Haro object
Theoretical concepts
Initial mass function Jeans instability Kelvin–Helmholtz mechanism Nebular hypothesis Planetary migration
Hellenica World - Scientific Library
Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License