Black hole complementarity is a conjectured solution to the black hole information paradox, proposed by Leonard Susskind, Larus Thorlacius,[1] and Gerard 't Hooft.[2][3]
Overview
Ever since Stephen Hawking suggested information is lost in an evaporating black hole once it passes through the event horizon and is inevitably destroyed at the singularity, and that this can turn pure quantum states into mixed states, some physicists have wondered if a complete theory of quantum gravity might be able to conserve information with a unitary time evolution. But how can this be possible if information cannot escape the event horizon without traveling faster than light? This seems to rule out Hawking radiation as the carrier of the missing information. It also appears as if information cannot be "reflected" at the event horizon as there is nothing special about it locally.
Leonard Susskind[4] proposed a radical resolution to this problem by claiming that the information is both reflected at the event horizon and passes through the event horizon and cannot escape, with the catch being no observer can confirm both stories simultaneously. According to an external observer, the infinite time dilation at the horizon itself makes it appear as if it takes an infinite amount of time to reach the horizon. He also postulated a stretched horizon, which is a membrane hovering about a Planck length outside the event horizon and which is both physical and hot. According to the external observer, infalling information heats up the stretched horizon, which then reradiates it as Hawking radiation, with the entire evolution being unitary. However, according to an infalling observer, nothing special happens at the event horizon itself, and both the observer and the information will hit the singularity. This isn't to say there are two copies of the information lying about — one at or just outside the horizon, and the other inside the black hole — as that would violate the no cloning theorem. Instead, an observer can only detect the information at the horizon itself, or inside, but never both simultaneously. Complementarity is a feature of the quantum mechanics of noncommuting observables, and Susskind proposed that both stories are complementary in the quantum sense.
An infalling observer will see the point of entry of the information as being localized on the event horizon, while an external observer will notice the information being spread out uniformly over the entire stretched horizon before being re-radiated. To an infalling observer, information and entropy pass through the horizon with nothing strange happening. To an external observer, the information and entropy is absorbed into the stretched horizon which acts like a dissipative fluid with entropy, viscosity and electrical conductivity. See the membrane paradigm for more details. The stretched horizon is conducting with surface charges which rapidly spread out over the horizon.
Recently, it appears that black hole complementarity combined with the monogamy of entanglement suggests the existence of a "firewall".[5]
References
Susskind; Thorlacius; Uglum (1993). "The Stretched Horizon and Black Hole Complementarity". Physical Review D. 48 (8): 3743–3761. arXiv:hep-th/9306069. Bibcode:1993PhRvD..48.3743S. doi:10.1103/PhysRevD.48.3743.
't Hooft, G. (1985). "On the quantum structure of a black hole". Nuclear Physics B. 256: 727–745. Bibcode:1985NuPhB.256..727T. doi:10.1016/0550-3213(85)90418-3.
't Hooft, G. (1990). "The black hole interpretation of string theory". Nuclear Physics B. 335 (1): 138–154. Bibcode:1990NuPhB.335..138T. doi:10.1016/0550-3213(90)90174-C.
Susskind, Leonard; Lindesay, James (31 December 2004). An introduction to black holes, information and the string theory revolution: The holographic universe. World Scientific Publishing Company. ISBN 978-981-256-083-4.
Almheiri, Ahmed; Marolf, Donald; Polchinski, Joseph; Sully, James (February 2013). "Black holes: complementarity or firewalls?". Journal of High Energy Physics. 2013 (2): 62. arXiv:1207.3123. Bibcode:2013JHEP...02..062A. doi:10.1007/jhep02(2013)062. ISSN 1029-8479.
vte
Quantum gravity
Central concepts
AdS/CFT correspondence Ryu-Takayanagi Conjecture Causal patch Gravitational anomaly Graviton Holographic principle IR/UV mixing Planck scale Quantum foam Trans-Planckian problem Weinberg–Witten theorem Faddeev-Popov ghost
Toy models
2+1D topological gravity CGHS model Jackiw–Teitelboim gravity Liouville gravity RST model Topological quantum field theory
Quantum field theory in curved spacetime
Bunch–Davies vacuum Hawking radiation Semiclassical gravity Unruh effect
Black hole complementarity Black hole information paradox Black-hole thermodynamics Bousso's holographic bound ER=EPR Firewall (physics) Gravitational singularity
Approaches
String theory
Bosonic string theory M-theory Supergravity Superstring theory
Loop quantum gravity Wheeler–DeWitt equation
Euclidean quantum gravity
Others
Causal dynamical triangulation Causal sets Noncommutative geometry Spin foam Group field theory Superfluid vacuum theory Twistor theory Dual graviton
Applications
Quantum cosmology
Eternal inflation Multiverse FRW/CFT duality
vte
Black holes
Types
Schwarzschild Rotating Charged Virtual Kugelblitz Primordial Planck particle
Size
Micro
Extremal Electron Stellar
Microquasar Intermediate-mass Supermassive
Active galactic nucleus Quasar Blazar
Formation
Stellar evolution Gravitational collapse Neutron star
Related links Tolman–Oppenheimer–Volkoff limit White dwarf
Related links Supernova
Related links Hypernova Gamma-ray burst Binary black hole
Properties
Gravitational singularity
Ring singularity Theorems Event horizon Photon sphere Innermost stable circular orbit Ergosphere
Penrose process Blandford–Znajek process Accretion disk Hawking radiation Gravitational lens Bondi accretion M–sigma relation Quasi-periodic oscillation Thermodynamics
Immirzi parameter Schwarzschild radius Spaghettification
Issues
Black hole complementarity Information paradox Cosmic censorship ER=EPR Final parsec problem Firewall (physics) Holographic principle No-hair theorem
Metrics
Schwarzschild (Derivation) Kerr Reissner–Nordström Kerr–Newman Hayward
Alternatives
Nonsingular black hole models Black star Dark star Dark-energy star Gravastar Magnetospheric eternally collapsing object Planck star Q star Fuzzball
Analogs
Optical black hole Sonic black hole
Lists
Black holes Most massive Nearest Quasars Microquasars
Related
Black Hole Initiative Black hole starship Compact star Exotic star
Quark star Preon star Gamma-ray burst progenitors Gravity well Hypercompact stellar system Membrane paradigm Naked singularity Quasi-star Rossi X-ray Timing Explorer Timeline of black hole physics White hole Wormhole
Hellenica World - Scientific Library
Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License