MiniBooNE is an experiment at Fermilab designed to observe neutrino oscillations (BooNE is an acronym for the Booster Neutrino Experiment). A neutrino beam consisting primarily of muon neutrinos is directed at a detector filled with 800 tons of mineral oil (ultrarefined methylene compounds) and lined with 1,280 photomultiplier tubes.[1] An excess of electron neutrino events in the detector would support the neutrino oscillation interpretation of the LSND (Liquid Scintillator Neutrino Detector) result.
MiniBooNE started collecting data in 2002[2] and was still running in 2017.[3]
History and motivation
Experimental observation of solar neutrinos and atmospheric neutrinos provided evidence for neutrino oscillations, implying that neutrinos have masses. Data from the LSND experiment at Los Alamos National Laboratory are controversial since they are not compatible with the oscillation parameters measured by other neutrino experiments in the framework of the Standard Model. Either there must be an extension to the Standard Model, or one of the experimental results must have a different explanation. Moreover, the KARMEN experiment in Karlsruhe[4] examined a [low energy] region similar to the LSND experiment, but saw no indications of neutrino oscillations. This experiment was less sensitive than LSND, and both could be right.
Cosmological data can provide an indirect but rather model-dependent bound to the mass of sterile neutrinos, such as the ms < 0.26 eV (0.44 eV) at 95% (99.9%) confidence limit given by Dodelson et al..[5] However, cosmological data can be accommodated within models with different assumptions, such as that by Gelmini et al.[6]
MiniBooNE was designed to unambiguously verify or refute the LSND controversial result in a controlled environment.
2007
After the beam was turned on in 2002, the first results came in late March 2007, and showed no evidence for muon neutrino to electron neutrino oscillations in the LSND [low energy] region, refuting a simple 2-neutrino oscillation interpretation of the LSND results.[7] More advanced analyses of their data are currently being undertaken by the MiniBooNE collaboration; early indications are pointing towards the existence of the sterile neutrino,[8] an effect interpreted by some physicists to be hinting of the existence of the bulk[9] or Lorentz violation.[10]
2008
Some members of MiniBooNE have formed a new collaboration with outside scientists and proposed a new experiment (called MicroBooNE) designed to further investigate this.[11]
2018
With a study published on arXiv,[3] the Collaboration announced that the finding of neutrino oscillations at MiniBooNE are confirmed at a 4.8 sigma level and, when combined with data at LSND, at a 6.1 sigma level. This hints at the detection of sterile neutrinos and a significant deviation from known physics.[12] The implication of the paper is that some of the muon neutrinos are flipping to sterile neutrinos before switching identity again to electron neutrinos.[13]
References
"Detector". MiniBooNE Experiment Details. Fermilab. Retrieved 2015-12-07.
"MiniBooNE website".
The MiniBooNE Collaboration (May 2018). "Observation of a Significant Excess of Electron-Like Events in the MiniBooNE Short-Baseline Neutrino Experiment".arXiv:1805.12028 [hep-ex].
"KARMEN experiment" (Press release). 3 August 2011. Archived from the original on 5 January 2013.
S. Dodelson; A. Melchiorri; A. Slosar (2006). "Is cosmology compatible with sterile neutrinos?". Physical Review Letters. 97 (4): 04301.arXiv:astro-ph/0511500. Bibcode:2006PhRvL..97d1301D. doi:10.1103/PhysRevLett.97.041301.
G. Gelmini; S. Palomares-Ruiz & S. Pascoli (2004). "Low reheating temperature and the visible sterile neutrino". Physical Review Letters. 93 (8): 081302.arXiv:astro-ph/0403323. Bibcode:2004PhRvL..93h1302G. doi:10.1103/PhysRevLett.93.081302. PMID 15447171.
A. A. Aguilar-Arevalo; et al. (MiniBooNE Collaboration) (2007). "A Search for Electron Neutrino Appearance at the Δm2 ~ 1 eV2 Scale". Physical Review Letters. 98 (23): 231801.arXiv:0704.1500. Bibcode:2007PhRvL..98w1801A. doi:10.1103/PhysRevLett.98.231801. PMID 17677898.
M. Alpert (August 2007). "Dimensional Shortcuts" . Scientific American. Archived from the original on 2013-01-24. Retrieved 2007-07-23.
H. Päs; S. Pakvasa; T.J. Weiler (2007). "Shortcuts in extra dimensions and neutrino physics". AIP Conference Proceedings. 903: 315.arXiv:hep-ph/0611263. doi:10.1063/1.2735188.
T. Katori; V.A. Kostelecky; R. Tayloe (2006). "Global three-parameter model for neutrino oscillations using Lorentz violation". Physical Review D. 74 (10): 105009.arXiv:hep-ph/0606154. Bibcode:2006PhRvD..74j5009K. doi:10.1103/PhysRevD.74.105009.
M. Alpert (September 2008). "Fermilab Looks for Visitors from Another Dimension" . Scientific American. Retrieved 2008-09-23.
Letzter, Rafi (1 June 2018). "A Major Physics Experiment Just Detected A Particle That Shouldn't Exist". LiveScience. Retrieved 4 June 2018.
Has US physics lab found a new particle?. Paul Rincon, BBC News. 6 June 2018.
External links
MiniBooNe first results press release andarXiv:0704.1500
MiniBooNE website
MiniBooNE publications
Experiment details
Overview of MiniBooNE for Mineral Oil Suppliers
An informal discussion of the experiment and initial results
Experiment Nixes Fourth Neutrino (April 2007 Scientific American)
Dimensional Shortcuts - evidence for sterile neutrino; (August 2007; Scientific American)
vte
Neutrino detectors, experiments, and facilities
Discoveries
Cowan–Reines ( νe ) Lederman–Schwartz–Steinberger ( νμ) DONUT ( ντ) Neutrino oscillation SN 1987 neutrino burst
Operating
(divided by primary neutrino source)
Astronomical
ANITA ANTARES ASD BDUNT Borexino BUST HALO IceCube LVD NEVOD SAGE Super-Kamiokande SNEWS
Reactor
Daya Bay Double Chooz KamLAND RENO STEREO
Accelerator
ANNIE ICARUS (Fermilab) MicroBooNE MINERνA MiniBooNE NA61/SHINE NOνA NuMI T2K
AMoRE COBRA CUORE EXO GERDA KamLAND-Zen MAJORANA NEXT PandaX SNO+ XMASS
Other
Construction
ARA ARIANNA Baikal-GVD BEST DUNE Hyper-Kamiokande JUNO KM3NeT SuperNEMO FASERν
Retired
AMANDA CDHS Chooz CNGS Cuoricino DONUT ERPM GALLEX Gargamelle GNO Heidelberg-Moscow Homestake ICARUS IGEX IMB K2K Kamiokande KARMEN KGF LSND MACRO MINOS MINOS+ NARC NEMO OPERA RICE SciBooNE SNO Soudan 2 Utah
Proposed
CUPID GRAND INO LAGUNA LEGEND LENA Neutrino Factory nEXO Nucifer SBND UNO JEM-EUSO WATCHMAN
Cancelled
DUMAND Project Long Baseline Neutrino Experiment NEMO Project NESTOR Project SOX BOREX
See also
BNO (Baksan or Baxan Neutrino Observatory) Kamioka Observatory LNGS SNOLAB List of neutrino experiments
Hellenica World - Scientific Library
Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License