ART

The Jiangmen Underground Neutrino Observatory (JUNO) is a medium baseline[2][3] reactor neutrino experiment under construction at Kaiping, Jiangmen in Southern China. It aims to determine the neutrino mass hierarchy and perform precision measurements of the Pontecorvo–Maki–Nakagawa–Sakata matrix elements. It will build on the mixing parameter results of many previous experiments. The collaboration was formed in July 2014[4] and construction began January 10, 2015.[5] The schedule aims to begin taking data in 2021.[6] Funding is provided by the Chinese Academy of Sciences, but the collaboration is international.

Planned as a follow-on to the Daya Bay Reactor Neutrino Experiment, it was originally planned for the same location, but the construction of a third nuclear reactor (the planned Lufeng nuclear power plant) in that area would disrupt the experiment, which depends on maintaining a fixed distance to nearby nuclear reactors.[7]:9 Instead it was moved to a location 53 km from both of the planned Yangjiang and Taishan nuclear power plants.[7]:4

Detector

The main detector consists of a 35.4 m (116 ft) diameter transparent acrylic glass sphere containing 20,000 tonnes of linear alkylbenzene liquid scintillator, surrounded by a stainless steel truss supporting approximately 53,000 photomultiplier tubes (17,000 large 20-inch (51 cm) diameter tubes, and 36,000 3-inch (7.6 cm) tubes filling in the gaps between them), immersed in a water pool instrumented with 2000 additional photomultiplier tubes as a muon veto.[8]:9 Deploying this 700 m (2,300 ft) underground will detect neutrinos with excellent energy resolution.[3] The overburden includes 270 m of granite mountain, which will reduce cosmic muon background.[9]

The much larger distance to the reactors (compared to less than 2 km for the Daya Bay far detector) makes the experiment better able to distinguish neutrino oscillations, but requires a much larger, and better-shielded, detector to detect a sufficient number of reactor neutrinos.
Physics
Predicted oscillation probability of electron neutrinos (black) oscillating to muon (blue) or tau (red) neutrinos, as a function of distance from source. Existing short-baseline experiments measure the first small dip in the black curve at 500 km/GeV; JUNO will observe the large dip at 16000 km/GeV. For reactor neutrinos with an energy of ≈3 MeV, the distances are ≈1.5 km and ≈50 km, respectively. This plot is based on assumed mixing parameters; the measured shape will differ and allow the actual parameters to be computed.

The main approach of the JUNO Detector in measuring neutrino oscillations is the observation of electron-antineutrinos (
ν
e) coming from two future nuclear power plants at approximately 53 km distance.[9] Since the expected rate of neutrinos reaching the detector is known from processes in the power plants, the absence of a certain neutrino flavor can give an indication of transition processes.[9]

Although not the primary goal, the detector is sensitive to atmospheric neutrinos, geoneutrinos and neutrinos from supernovae as well.
Expected Sensitivity

Daya Bay and RENO measured θ13 and determined it has a large non-zero value. Daya Bay will be able to measure the value to ≈4% precision and RENO ≈7% after several years. JUNO is designed to improve uncertainty in several neutrino parameters to less than 1%.[10]
See also

Daya Bay
RENO
Double Chooz
KamLAND
NOνA
Wang Yifang

References

He, Miao (9 September 2014). Jiangmen Underground Neutrino Observatory (JUNO) (PDF). Neutrino Oscillation Workshop. Conca Specchiulla (Otranto, Lecce, Italy). Page 9 shows a topographical overview of the complex, with a distinctive C-shaped lake near the top of the figure. The lake is clearly the one at 22.1250°N 112.5095°E. Scaling and aligning the image with a map places the experiment at the stated coordinates.
Ciuffoli, Emilio; Evslin, Jarah; Zhang, Xinmin (August 2013). "The Neutrino Mass Hierarchy from Nuclear Reactor Experiments". Physical Review D. 88 (3): 033017.arXiv:1302.0624. Bibcode:2013PhRvD..88c3017C. doi:10.1103/PhysRevD.88.033017.
Li, Yu-Feng; Cao, Jun; Wang, Yifang; Zhan, Liang (16 July 2013). "Unambiguous determination of the neutrino mass hierarchy using reactor neutrinos". Physical Review D. 88 (1): 013008.arXiv:1303.6733. Bibcode:2013PhRvD..88a3008L. doi:10.1103/PhysRevD.88.013008.
"JUNO International Collaboration established". Interactions NewsWire. 30 July 2014. Retrieved 12 January 2015.
"Groundbreaking at JUNO" (Press release). IHEP. 10 January 2015. Retrieved 12 January 2015 – via Interactions NewsWire.
Guo, Cong (2019-10-23). "Status of the Jiangmen Underground Neutrino Observatory".arXiv:1910.10343.
Wang, Yifang (24 June 2014). JUNO Experiment (PDF). International Meeting for Large Neutrino Infrastructures. Paris.
Xiao, Mengjiao (3 November 2016). UNO central detector and calibration strategy (PDF). International Workshop on Next Generation Nucleon Decay and Neutrino Detectors (NNN16). Beijing.
"Introduction to JUNO". JUNO at IHEP. 2013-09-12. Archived from the original on 2014-12-02. Retrieved 2015-01-12.

Li, Yu-Feng (25 Feb 2014). "Overview of the Jiangmen Underground Neutrino Observatory (JUNO)". International Journal of Modern Physics: Conference Series. 31: 1460300.arXiv:1402.6143. Bibcode:2014IJMPS..3160300L. doi:10.1142/S2010194514603007.

External links

Jiangmen Underground Neutrino Observatory web site
JUNO at Shanghai Jiao Tong University
JUNO documents at INFN
T. Adam; et al. (20 September 2015). "JUNO Conceptual Design Report".arXiv:1508.07166.

vte

Neutrino detectors, experiments, and facilities
Discoveries

Cowan–Reines ( νe ) Lederman–Schwartz–Steinberger ( νμ) DONUT ( ντ) Neutrino oscillation SN 1987 neutrino burst

Operating
(divided by primary neutrino source)
Astronomical

ANITA ANTARES ASD BDUNT Borexino BUST HALO IceCube LVD NEVOD SAGE Super-Kamiokande SNEWS

Reactor

Daya Bay Double Chooz KamLAND RENO STEREO

Accelerator

ANNIE ICARUS (Fermilab) MicroBooNE MINERνA MiniBooNE NA61/SHINE NOνA NuMI T2K

0νββ

AMoRE COBRA CUORE EXO GERDA KamLAND-Zen MAJORANA NEXT PandaX SNO+ XMASS

Other

KATRIN WITCH

Construction

ARA ARIANNA Baikal-GVD BEST DUNE Hyper-Kamiokande JUNO KM3NeT SuperNEMO FASERν

Retired

AMANDA CDHS Chooz CNGS Cuoricino DONUT ERPM GALLEX Gargamelle GNO Heidelberg-Moscow Homestake ICARUS IGEX IMB K2K Kamiokande KARMEN KGF LSND MACRO MINOS MINOS+ NARC NEMO OPERA RICE SciBooNE SNO Soudan 2 Utah

Proposed

CUPID GRAND INO LAGUNA LEGEND LENA Neutrino Factory nEXO Nucifer SBND UNO JEM-EUSO WATCHMAN

Cancelled

DUMAND Project Long Baseline Neutrino Experiment NEMO Project NESTOR Project SOX BOREX

See also

BNO (Baksan or Baxan Neutrino Observatory) Kamioka Observatory LNGS SNOLAB List of neutrino experiments

Physics Encyclopedia

World

Index

Hellenica World - Scientific Library

Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License