ART

Carbon detonation or Carbon deflagration is the violent reignition of thermonuclear fusion in a white dwarf star that was previously slowly cooling. It involves a runaway thermonuclear process which spreads through the white dwarf in a matter of seconds, producing a Type Ia supernova which releases an immense amount of energy as the star is blown apart. The carbon detonation/deflagration process leads to a supernova by a different route than the better known Type II (core-collapse) supernova (the type II is caused by the cataclysmic explosion of the outer layers of a massive star as its core implodes).[1]

A white dwarf is the remnant of a small to medium size star (our sun is an example of these). At the end of its life, the star has burned its hydrogen and helium fuel, and thermonuclear fusion processes cease. The star does not have enough mass to either burn much heavier elements, or to implode into a neutron star or type II supernova as a larger star can, from the force of its own gravity, so it gradually shrinks and becomes very dense as it cools, glowing white and then red, for a period many times longer than the present age of the Universe.

Occasionally, a white dwarf gains mass from another source – for example, a binary star companion that is close enough for the dwarf star to siphon sufficient amounts of matter onto itself; or a collision with other stars, the siphoned matter having been expelled during the process of the companion's own late stage stellar evolution. If the white dwarf gains enough matter, its internal pressure and temperature will rise enough for carbon to begin fusing in its core. Carbon detonation generally occurs at the point when the accreted matter pushes the white dwarf's mass close to the Chandrasekhar limit of roughly 1.4 solar masses. This is the mass at which gravity can overcome the electron degeneracy pressure which had prevented the star from collapsing during its lifetime. The same also happens when two white dwarfs merge and the mass of the body formed is below the Chandrasekhar limit; if two white dwarves merge and the result is over the limit, a Type Ia supernova will occur.

A main sequence star supported by thermal pressure would expand and cool which automatically counterbalances an increase in thermal energy. However, degeneracy pressure is independent of temperature; the white dwarf is unable to regulate the fusion process in the manner of normal stars, so it is vulnerable to a runaway fusion reaction.

In the case of a white dwarf, the restarted fusion reactions releases heat, but the outward pressure that exists in the star and supports it against further collapse is initially due almost entirely to degeneracy pressure, not fusion processes or heat. Therefore, even when fusion recommences the outward pressure that is key to the star's thermal balance does not increase much. One result is that the star does not expand much to balance its fusion and heat processes with gravity and electron pressure, as it did when burning hydrogen (until too late). This increase of heat production without a means of cooling by expansion raises the internal temperature dramatically, and therefore the rate of fusion also increases extremely fast as well, a form of positive feedback known as thermal runaway.

A 2004 analysis of such a process states that:

A deflagration flame burning from the center of the white dwarf star outward leaves hot and light burnt material behind. The fuel in front of it is, however, cold and dense. This results in a density stratification inverse to the gravitational field of the star, which is therefore unstable. Thus, blobs of burning material form and ascend into the fuel. At their interfaces shear flows emerge. These effects lead to strong swirls. The resulting turbulent motions deform the flame and thus enlarge its surface. This increases the net burning rate of the flame and leads to the energetic explosion.[2]

The flame accelerates dramatically, in part due to the Rayleigh–Taylor instability and interactions with turbulence. The resumption of fusion spreads outward in a series of uneven, expanding "bubbles" in accordance with Rayleigh–Taylor instability.[3] Within the fusion area, the increase in heat with unchanged volume results in an exponentially rapid increase in the rate of fusion – a sort of supercritical event as thermal pressure increases boundlessly. As hydrostatic equilibrium is not possible in this situation, a "thermonuclear flame" is triggered and an explosive eruption through the dwarf star's surface that completely disrupts it, seen as a Ia supernova.

Regardless of the exact details of this nuclear fusion, it is generally accepted that a substantial fraction of the carbon and oxygen in the white dwarf is converted into heavier elements within a period of only a few seconds,[4] raising the internal temperature to billions of degrees. This energy release from thermonuclear fusion (1–2×1044 J[5]) is more than enough to unbind the star; that is, the individual particles making up the white dwarf gain enough kinetic energy to fly apart from each other. The star explodes violently and releases a shock wave in which matter is typically ejected at speeds on the order of 5,000–20000 km/s, roughly 6% of the speed of light. The energy released in the explosion also causes an extreme increase in luminosity. The typical visual absolute magnitude of Type Ia supernovae is Mv = −19.3 (about 5 billion times brighter than the Sun), with little variation.[6] This process, of a volume supported by electron degeneracy pressure instead of thermal pressure gradually reaching conditions capable of igniting runaway fusion, is also found in a less dramatic form in a helium flash in the core of a sufficiently massive red giant star.
See also

Helium flash, a similar (although less cataclysmic) sudden initiation of fusion
Nuclear fusion

References

Gilmore, Gerry (2004). "The Short Spectacular Life of a Superstar". Science. 304 (5697): 1915–1916. doi:10.1126/science.1100370. PMID 15218132. S2CID 116987470.
Röpke, Friedrich; Hillebrandt, Wolfgang (October 2004). "Current Research Highlight: Three-dimensional simulations of Type Ia supernova explosions". Max-Planck-Institut für Astrophysik.
http://www.jinaweb.org/docs/nuggets/truran-3-1.pdf#search=%22type%20Ia%20supernova%20simulation%22
Röpke, F. K.; Hillebrandt, W. (2004). "The case against the progenitor's carbon-to-oxygen ratio as a source of peak luminosity variations in Type Ia supernovae". Astronomy and Astrophysics. 420 (1): L1–L4. arXiv:astro-ph/0403509. Bibcode:2004A&A...420L...1R. doi:10.1051/0004-6361:20040135. S2CID 2849060.
Khokhlov, A.; Müller, E.; Höflich, P. (1993). "Light curves of Type IA supernova models with different explosion mechanisms". Astronomy and Astrophysics. 270 (1–2): 223–248. Bibcode:1993A&A...270..223K.

Hillebrandt, W.; Niemeyer, J. C. (2000). "Type IA Supernova Explosion Models". Annual Review of Astronomy and Astrophysics. 38 (1): 191–230. arXiv:astro-ph/0006305. Bibcode:2000ARA&A..38..191H. doi:10.1146/annurev.astro.38.1.191. S2CID 10210550.

External links

JINA: Type Ia Supernova Flame Models
A Computer Simulation of Carbon Detonation/Deflagration

vte

White dwarf
Formation

Chandrasekhar limit PG 1159 star Stellar evolution Hertzsprung–Russell diagram Mira variable

Fate

Black dwarf Type Ia supernova
Candidates Neutron star
Pulsar Magnetar Related links Stellar black hole
Related links Compact star
Quark star Exotic star Extreme helium star Subdwarf B star Helium planet

In binary
systems

Nova
Remnant List Dwarf nova Symbiotic nova Cataclysmic variable star
AM CVn star Polar Intermediate polar X-ray binary
Super soft X-ray source Binary pulsar
X-ray pulsar List Helium flash Carbon detonation

Properties

Pulsating Urca process Electron-degenerate matter Quasi-periodic oscillations

Related

Planetary nebula
List RAMBOs White dwarf luminosity function Timeline of white dwarfs, neutron stars, and supernovae

vte

Supernovae
Classes

Type Ia Type Ib and Ic Type II (IIP, IIL, IIn, and IIb) Hypernova Superluminous Pair-instability


Physics of

Calcium-rich Carbon detonation Foe Near-Earth Phillips relationship Nucleosynthesis
P-process R-process Neutrinos

Related

Imposter
pulsational pair-instability Failed Gamma-ray burst Kilonova Luminous red nova Nova Pulsar kick Quark-nova Symbiotic nova

Progenitors

Hypergiant
yellow Luminous blue variable Supergiant
blue red yellow White dwarf
related links Wolf–Rayet star

Remnants

Supernova remnant
Pulsar wind nebula Neutron star
pulsar magnetar related links Stellar black hole
related links Compact star
quark star exotic star Zombie star Local Bubble Superbubble
Orion–Eridanus

Discovery

Guest star History of supernova observation Timeline of white dwarfs, neutron stars, and supernovae

Lists

Candidates Notable Massive stars Most distant Remnants In fiction

Notable

Barnard's Loop Cassiopeia A Crab
Crab Nebula iPTF14hls Tycho's Kepler's SN 1987A SN 185 SN 1006 SN 2003fg Remnant G1.9+0.3 SN 2007bi SN 2011fe SN 2014J SN Refsdal Vela Remnant

Research

ASAS-SN Calán/Tololo Survey High-Z Supernova Search Team Katzman Automatic Imaging Telescope Monte Agliale Supernovae and Asteroid Survey Nearby Supernova Factory Sloan Supernova Survey Supernova/Acceleration Probe Supernova Cosmology Project SuperNova Early Warning System Supernova Legacy Survey Texas Supernova Search

Physics Encyclopedia

World

Index

Hellenica World - Scientific Library

Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License