In mathematics, the Yang–Mills–Higgs equations are a set of non-linear partial differential equations for a Yang–Mills field, given by a connection, and a Higgs field, given by a section of a vector bundle. These equations are
\( D_{A}*F_{A}+[\Phi ,D_{A}\Phi ]=0, \)
\( D_{A}*D_{A}\Phi =0 \)
with a boundary condition
\( \lim _{{|x|\rightarrow \infty }}|\Phi |(x)=1. \)
These equations are named after Chen Ning Yang, Robert Mills, and Peter Higgs. They are very closely related to the Ginzburg–Landau equations, when these are expressed in a general geometric setting.
M.V. Goganov and L.V. Kapitanskii have shown that the Cauchy problem for hyperbolic Yang–Mills–Higgs equations in Hamiltonian gauge on 4-dimensional Minkowski space have a unique global solution with no restrictions at the spatial infinity. Furthermore, the solution has the finite propagation speed property.
See also
Yang–Mills equations
References
M.V. Goganov and L.V. Kapitansii, "Global solvability of the initial problem for Yang-Mills-Higgs equations", Zapiski LOMI 147,18–48, (1985); J. Sov. Math, 37, 802–822 (1987).
vte
Quantum field theories
Standard
Theories
Chern–Simons Conformal field theory Ginzburg–Landau Kondo effect Local QFT Noncommutative QFT Quantum Yang–Mills Quartic interaction sine-Gordon String theory Toda field Topological QFT Yang–Mills Yang–Mills–Higgs
Models
Chiral Non-linear sigma Schwinger Standard Model Thirring–Wess Wess–Zumino Wess–Zumino–Witten Yukawa
Theories
BCS theory Fermi's interaction Luttinger liquid Top quark condensate
Models
Gross–Neveu Hubbard Nambu–Jona-Lasinio Thirring Thirring–Wess
Related
History Axiomatic QFT Loop quantum gravity Loop quantum cosmology QFT in curved spacetime Quantum chaos Quantum chromodynamics Quantum dynamics Quantum electrodynamics
links Quantum gravity
links Quantum hadrodynamics Quantum hydrodynamics Quantum information Quantum information science
links Quantum logic Quantum thermodynamics
Hellenica World - Scientific Library
Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License