A solid-state laser is a laser that uses a gain medium that is a solid, rather than a liquid as in dye lasers or a gas as in gas lasers. Semiconductor-based lasers are also in the solid state, but are generally considered as a separate class from solid-state lasers (see Laser diode).
Solid-state media
Further information: List of laser types § Solid-state lasers
Generally, the active medium of a solid-state laser consists of a glass or crystalline "host" material, to which is added a "dopant" such as neodymium, chromium, erbium,[1] thulium[2] or ytterbium.[3] Many of the common dopants are rare-earth elements, because the excited states of such ions are not strongly coupled with the thermal vibrations of their crystal lattices (phonons), and their operational thresholds can be reached at relatively low intensities of laser pumping.
There are many hundreds of solid-state media in which laser action has been achieved, but relatively few types are in widespread use. Of these, probably the most common is neodymium-doped yttrium aluminum garnet (Nd:YAG). Neodymium-doped glass (Nd:glass) and ytterbium-doped glasses or ceramics are used at very high power levels (terawatts) and high energies (megajoules), for multiple-beam inertial confinement fusion.
The first material used for lasers was synthetic ruby crystals. Ruby lasers are still used for a few applications, but they are not common because of their low power efficiencies. At room temperature, ruby lasers emit only short pulses of light, but at cryogenic temperatures they can be made to emit a continuous train of pulses.[4]
Some solid-state lasers can also be tunable using several intracavity techniques, which employ etalons, prisms, and gratings, or a combination of these.[5] Titanium-doped sapphire is widely used for its broad tuning range, 660 to 1080 nanometers. Alexandrite lasers are tunable from 700 to 820 nm and yield higher-energy pulses than titanium-sapphire lasers because of the gain medium's longer energy storage time and higher damage threshold.
Pumping
Further information: Laser pumping
Solid state lasing media are typically optically pumped, using either a flashlamp or arc lamp, or by laser diodes. Diode-pumped solid-state lasers tend to be much more efficient and have become much more common as the cost of high-power semiconductor lasers has decreased.
Mode locking
Mode locking of solid-state lasers and fiber lasers has wide applications, as large-energy ultra-short pulses can be obtained. There are two types of saturable absorbers that are widely used as mode lockers: SESAM,[6][7][8] and SWCNT. Graphene has also been used.[9][10][11] These materials use a nonlinear optical behavior called saturable absorption to make a laser create short pulses.
Current applications and developments
Solid-state lasers are being developed as optional weapons for the F-35 Lightning II, and are reaching near-operational status,[12][13][14] as well as the introduction of Northrop Grumman's FIRESTRIKE laser weapon system.[15][16] In April 2011 the United States Navy tested a high energy solid state laser. The exact range is classified, but they said it fired "miles not yards".[17][18]
Uranium-doped calcium fluoride was the second type of solid state laser invented, in the 1960s. Peter Sorokin and Mirek Stevenson at IBM's laboratories in Yorktown Heights (US) achieved lasing at 2.5 µm shortly after Maiman's ruby laser.
The U.S. Army is preparing to test a truck-mounted laser system using a 58 kW fiber laser.[19] The scalability of the laser opens up use on everything from drones to massive ships at different levels of power. The new laser puts 40 percent of available energy into its beam, which is considered very high for solid-state lasers. Since more and more military vehicles and trucks are using advanced hybrid engine and propulsion systems that produce electricity for applications like lasers the applications are likely to proliferate in trucks, drones, ships, helicopters and planes.[19]
See also
Disk laser
Laser construction
Solid-state dye lasers
Soliton
Vector soliton
Dissipative soliton
References
Singh, G.; Purnawirman; Bradley, J. D. B.; Li, N.; Magden, E. S.; Moresco, M.; Adam, T. N.; Leake, G.; Coolbaugh, D.; Watts, M. R. (2016). "Resonant pumped erbium-doped waveguide lasers using distributed Bragg reflector cavities". Optics Letters. 41 (6): 1189–1192. Bibcode:2016OptL...41.1189S. doi:10.1364/OL.41.001189. PMID 26977666.
Su, Z.; Li, N.; Magden, E. S.; Byrd, M.; Purnawirman; Adam, T. N.; Leake, G.; Coolbaugh, D.; Bradley, J. D.; Watts, M. R. (2016). "Ultra-compact and low-threshold thulium microcavity laser monolithically integrated on silicon". Optics Letters. 41 (24): 5708–5711. Bibcode:2016OptL...41.5708S. doi:10.1364/OL.41.005708. PMID 27973495.
Z. Su, J. D. Bradley, N. Li, E. S. Magden, Purnawirman, D. Coleman, N. Fahrenkopf, C. Baiocco, T. Adam, G. Leake, D. Coolbaugh, D. Vermeulen, and M. R. Watts (2016) "Ultra-Compact CMOS-Compatible Ytterbium Microlaser", Integrated Photonics Research, Silicon and Nanophotonics 2016, IW1A.3.
"Continuous solid-state laser operation revealed by BTL" (PDF). Astronautics: 74. March 1962.
N. P. Barnes, Transition metal solid-state lasers, in Tunable Lasers Handbook, F. J. Duarte (Ed.) (Academic, New York, 1995).
H. Zhang et al., "Induced solitons formed by cross polarization coupling in a birefringent cavity fiber laser" Archived 7 July 2011 at the Wayback Machine, Opt. Lett., 33, 2317–2319.(2008).
D. Y. Tang et al., "Observation of high-order polarization-locked vector solitons in a fiber laser" Archived 20 January 2010 at the Wayback Machine, Physical Review Letters, 101, 153904 (2008).
L. M. Zhao et al., "Polarization rotation locking of vector solitons in a fiber ring laser" Archived 7 July 2011 at the Wayback Machine, Optics Express, 16,10053–10058 (2008).
H. Zhang; D. Y. Tang; L. M. Zhao; Q. L. Bao; K. P. Loh (2009). "Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene" (PDF). Optics Express. 17 (20): 17630–5. arXiv:0909.5536. Bibcode:2009OExpr..1717630Z. doi:10.1364/OE.17.017630. PMID 19907547. Archived from the original (PDF) on 17 July 2011.
Han Zhang; Qiaoliang Bao; Dingyuan Tang; Luming Zhao & Kianping Loh (2009). "Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker" (PDF). Applied Physics Letters. 95 (14): P141103. arXiv:0909.5540. Bibcode:2009ApPhL..95n1103Z. doi:10.1063/1.3244206. Archived from the original (PDF) on 17 July 2011.
"Graphene: Mode-locked lasers". NPG Asia Materials. 21 December 2009. doi:10.1038/asiamat.2009.52.
Fulghum, David A. "Lasers being developed for F-35 and AC-130." Aviation Week and Space Technology, (8 July 2002). Access date: 8 February 2006.
Morris, Jefferson. "Keeping cool a big challenge for JSF laser, Lockheed Martin says." Aerospace Daily, 26 September 2002. Access date: 3 June 2007.
Fulghum, David A. "Lasers, HPM weapons near operational status." Aviation Week and Space Technology, 22 July 2002. Access date: 8 February 2006.
"Northrop Grumman Press Release". Archived from the original on 8 December 2008. Retrieved 13 November 2008.
"The Register Press Release". Retrieved 14 November 2008.
"US Navy's laser test could put heat on pirates". Fox News. 13 April 2011.
Kaplan, Jeremy A. (8 April 2011). "Navy shows off powerful new laser weapon". Fox News.
Tucker, Patrick (16 March 2017). "US Army to Test Powerful New Truck-Mounted Laser 'Within Months'". Defense One. Retrieved 13 August 2017.
Koechner, Walter (1999). Solid-State Laser Engineering (5th ed.). Springer. ISBN 978-3-540-65064-5.
vte
Solid-state lasers
Distinct subtypes
Semiconductor laser
Yttrium aluminium garnet
Nd:YAG laser Er:YAG laser Nd:Cr:YAG Yb:YAG Nd:Ce:YAG Ho:YAG Dy:YAG Sm:YAG Tb:YAG Ce:YAG Ce:Gd:YAG Gd:YAG
Glass
Nd:glass Ytterbium glass 147Pm+3:Glass Er:Yb:Glass
Other gain media
Ruby laser Yttrium iron garnet (YIG) Terbium gallium garnet (TGG) Ti:sapphire laser Solid-state dye laser (SSDL/SSOL/SSDPL) Yttrium lithium fluoride (YLF)
Neodymium-doped yttrium lithium fluoride (Nd:YLF) Yttrium orthovanadate (YVO4)
Neodymium-doped yttrium orthovanadate (Nd:YVO4) Yttrium calcium oxoborate (YCOB)
Nd:YCOB laser Ce:LiSAF Ce:LiCAF Cr:ZnSe U:CaF2 Sm:CaF2 Yb:SFAP
Structures
Diode-pumped solid-state laser (DPSSL) Fiber laser Figure-8 laser Disk laser F-center laser
Specific lasers
Trident laser ZEUS-HLONS (HMMWV Laser Ordnance Neutralization System) Nova (laser) Cyclops laser Janus laser Argus laser Shiva laser HiPER Laboratory for Laser Energetics Laser Mégajoule LULI2000 Mercury laser ISKRA-6 Vulcan laser
Aspects
Mode-locking Energy transfer upconversion Solar-pumped laser
Laser types: Solid-state
Semiconductor Dye Gas
Chemical Excimer Ion Metal Vapor
vte
List of laser articles List of laser types List of laser applications Laser acronyms
Laser types: Solid-state
Semiconductor Dye Gas
Chemical Excimer Ion Metal Vapor
Laser physics
Active laser medium Amplified spontaneous emission Continuous wave Doppler cooling Laser ablation Laser cooling Laser linewidth Lasing threshold Magneto-optical trap Optical tweezers Population inversion Resolved sideband cooling Ultrashort pulse
Laser optics
Beam expander Beam homogenizer B Integral Chirped pulse amplification Gain-switching Gaussian beam Injection seeder Laser beam profiler M squared Mode-locking Multiple-prism grating laser oscillator Multiphoton intrapulse interference phase scan Optical amplifier Optical cavity Optical isolator Output coupler Q-switching Regenerative amplification
Laser spectroscopy
Cavity ring-down spectroscopy Confocal laser scanning microscopy Laser-based angle-resolved photoemission spectroscopy Laser diffraction analysis Laser-induced breakdown spectroscopy Laser-induced fluorescence Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy Raman spectroscopy Second-harmonic imaging microscopy Terahertz time-domain spectroscopy Tunable diode laser absorption spectroscopy Two-photon excitation microscopy Ultrafast laser spectroscopy
Laser ionization
Above-threshold ionization Atmospheric-pressure laser ionization Matrix-assisted laser desorption/ionization Resonance-enhanced multiphoton ionization Soft laser desorption Surface-assisted laser desorption/ionization Surface-enhanced laser desorption/ionization
Laser fabrication
Laser beam welding Laser bonding Laser converting Laser cutting Laser cutting bridge Laser drilling Laser engraving Laser-hybrid welding Laser peening Multiphoton lithography Pulsed laser deposition Selective laser melting Selective laser sintering
Laser medicine
Computed tomography laser mammography Laser capture microdissection Laser hair removal Laser lithotripsy Laser coagulation Laser surgery Laser thermal keratoplasty LASIK Low-level laser therapy Optical coherence tomography Photorefractive keratectomy Photorejuvenation
Laser fusion
Argus laser Cyclops laser GEKKO XII HiPER ISKRA lasers Janus laser Laboratory for Laser Energetics Laser integration line Laser Mégajoule Long path laser LULI2000 Mercury laser National Ignition Facility Nike laser Nova (laser) Novette laser Shiva laser Trident laser Vulcan laser
Civil applications
3D laser scanner CD DVD Blu-ray Laser lighting display Laser pointer Laser printer Laser tag
Military applications
Advanced Tactical Laser Boeing Laser Avenger Dazzler (weapon) Electrolaser Laser designator Laser guidance Laser-guided bomb Laser guns Laser rangefinder Laser warning receiver Laser weapon LLM01 Multiple Integrated Laser Engagement System Tactical High Energy Laser Tactical light ZEUS-HLONS (HMMWV Laser Ordnance Neutralization System)
Hellenica World - Scientific Library
Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License