A reversed-field pinch (RFP) is a device used to produce and contain near-thermonuclear plasmas. It is a toroidal pinch which uses a unique magnetic field configuration as a scheme to magnetically confine a plasma, primarily to study magnetic confinement fusion. Its magnetic geometry is somewhat different from that of the more common tokamak. As one moves out radially, the portion of the magnetic field pointing toroidally reverses its direction, giving rise to the term reversed field. This configuration can be sustained with comparatively lower fields than that of a tokamak of similar power density. One of the disadvantages of this configuration is that it tends to be more susceptible to non-linear effects and turbulence. This makes it a useful system for studying non-ideal (resistive) magnetohydrodynamics. RFPs are also used in studying astrophysical plasmas, which share many common features.
The largest Reversed Field Pinch device presently in operation is the RFX (R/a = 2/0.46) in Padua, Italy. Others include the MST (R/a = 1.5/0.5) in the United States, EXTRAP T2R (R/a = 1.24/0.18) in Sweden, RELAX (R = 0.51/0.25) in Japan, and KTX (R/a = 1.4/0.4) in China.
Characteristics
Unlike the Tokamak, which has a much larger magnetic field in the toroidal direction than the poloidal direction, an RFP has a comparable field strength in both directions (though the sign of the toroidal field reverses). Moreover, a typical RFP has a field strength approximately one half to one tenth that of a comparable Tokamak. The RFP also relies on driving current in the plasma to reinforce the field from the magnets through the dynamo effect.
Magnetic topology
The Internal Field in an RFP
The reversed-field pinch works towards a state of minimum energy.
The magnetic field lines coil loosely around a center torus. They coil outwards. Near the plasma edge, the toroidal magnetic field reverses and the field lines coil in the reverse direction.
Internal fields are bigger than the fields at the magnets.
RFP in Fusion Research: comparison with other confinement configurations
The RFP has many features that make it a promising configuration for a potential fusion reactor.
Advantages
Due to the lower overall fields, an RFP reactor might not need superconducting magnets. This is a large advantage over tokamaks since superconducting magnets are delicate and expensive and so must be shielded from the neutron rich fusion environment. RFPs are susceptible to surface instabilities and so require a close fitting shell. Some experiments (such as the Madison Symmetric Torus) use their close fitting shell as a magnetic coil by driving current through the shell itself. This is attractive from a reactor standpoint since a solid copper shell (for example) would be fairly robust against high energy neutrons, compared with superconducting magnets. There is also no established beta limit for RFPs. There exists a possibility that a reversed field pinch could achieve ignition solely with ohmic power (by driving current through the plasma and generating heat from electrical resistance, rather than through electron cyclotron resonance heating), which would be much simpler than tokamak designs, though it could not be operated in steady state.
Disadvantages
Typically RFPs require a large amount of current to be driven, and although promising experiments are underway, there is no established method of replacing ohmically driven current, which is fundamentally limited by the machine parameters. RFPs are also prone to tearing modes which lead to overlapping magnetic islands and therefore rapid transport from the core of the plasma to the edge. These problems are areas of active research in the RFP community.
The plasma confinement in the best RFP's is only about 1% as good as in the best tokamaks. One reason for this is that all existing RFPs are relatively small. MST was larger than any previous RFP device, and thus it tested this important size issue.[1]. The RFP is believed to require a shell with high electrical conductivity very close to the boundary of the plasma. This requirement is an unfortunate complication in a reactor. The Madison Symmetric Torus was designed to test this assumption and to learn how good the conductor must be and how close to the plasma it must be placed. In RFX, the thick shell was replaced with an active system of 192 coils, which cover the entire torus with their saddle shape, and response to the magnetic push of the plasma. Active control of plasma modes is also possible with this system.
Plasma Physics Research
The Reversed Field Pinch is also interesting from a physics standpoint. RFP dynamics are highly turbulent. RFPs also exhibit a strong plasma dynamo, similar to many astrophysical bodies. Basic plasma science is another important aspect of Reversed Field Pinch research.
External links
RFX: Reversed-Field eXperiment
Measurement of superthermal electron flow and temperature in a reversed-field pinch experiment by an electrostatic electron energy analyser
vte
Fusion power, processes and devices
Core topics
Nuclear fusion
Timeline List of experiments Nuclear power Nuclear reactor Atomic nucleus Fusion energy gain factor Lawson criterion Magnetohydrodynamics Neutron Plasma
Processes,
methods
Confinement
type
Gravitational
Alpha process Triple-alpha process CNO cycle Fusor Helium flash Nova
remnants Proton-proton chain Carbon-burning Lithium burning Neon-burning Oxygen-burning Silicon-burning R-process S-process
Dense plasma focus Field-reversed configuration Levitated dipole Magnetic mirror
Bumpy torus Reversed field pinch Spheromak Stellarator Tokamak
Spherical Z-pinch
Inertial
Bubble (acoustic) Laser-driven Magnetized Liner Inertial Fusion
Fusor Polywell
Other forms
Colliding beam Magnetized target Migma Muon-catalyzed Pyroelectric
Devices, experiments
Magnetic confinement
Tokamak
International
Americas
Canada STOR-M United States Alcator C-Mod ARC
SPARC DIII-D Electric Tokamak LTX NSTX
PLT TFTR Pegasus Brazil ETE Mexico Novillo [es]
Asia,
Oceania
China CFETR EAST
HT-7 SUNIST India ADITYA SST-1 Japan JT-60 QUEST [ja] Pakistan GLAST South Korea KSTAR
Europe
European Union JET Czech Republic COMPASS GOLEM [cs] France TFR WEST Germany ASDEX Upgrade TEXTOR Italy FTU IGNITOR Portugal ISTTOK Russia T-15 Switzerland TCV United Kingdom MAST-U START STEP
Stellarator
Americas
United States CNT CTH HIDRA HSX Model C NCSX Costa Rica SCR-1
Asia,
Oceania
Australia H-1NF Japan Heliotron J LHD
Europe
Germany WEGA Wendelstein 7-AS Wendelstein 7-X Spain TJ-II Ukraine Uragan-2M
Uragan-3M [uk]
Magnetized target
Canada SPECTOR United States LINUS FRX-L – FRCHX Fusion Engine
Other
Russia GDT United States Astron LDX Lockheed Martin CFR MFTF
TMX Perhapsatron PFRC Riggatron SSPX United Kingdom Sceptre Trisops ZETA
Inertial confinement
Laser
Americas
United States Argus Cyclops Janus LIFE Long path NIF Nike Nova OMEGA Shiva
Asia
Japan GEKKO XII
Europe
European Union HiPER Czech Republic Asterix IV (PALS) France LMJ LULI2000 Russia ISKRA United Kingdom Vulcan
Non-laser
Applications
Thermonuclear weapon
Pure fusion weapon
International Fusion Materials Irradiation Facility ITER Neutral Beam Test Facility
vte
Nuclear technology
Science
Chemistry Engineering Physics Atomic nucleus Fission Fusion Radiation
ionizing braking
Fuel
Tritium Deuterium Helium-3 Fertile material Fissile material Isotope separation Nuclear material
Uranium
enriched depleted Plutonium Thorium
Neutron
Activation Capture Poison Cross section Generator Radiation Reflector Temperature Thermal Fast Fusion
Power
by country Power plant Economics Multi-mission radioisotope thermoelectric generator Accidents and incidents Policy Fusion Radioisotope thermoelectric (RTG) Propulsion
rocket Safety and security
Medicine
Imaging
RadBall Scintigraphy Single-photon emission (SPECT) Positron-emission tomography (PET)
Therapy
Fast-neutron Neutron capture therapy of cancer Targeted alpha-particle Proton-beam Tomotherapy Brachytherapy Radiation therapy Radiosurgery Radiopharmacology
Weapons
Topics
Arms race Delivery Design Disarmament Ethics Explosion
effects History Proliferation Testing
high-altitude underground Warfare Yield
TNTe
Lists
Estimated death tolls from attacks States with nuclear weapons Historical stockpiles and tests
Tests Tests in the United States WMD treaties Weapon-free zones Weapons
Waste
Products
Actinide
Reprocessed uranium Reactor-grade plutonium Minor actinide Activation Fission
LLFP Actinide chemistry
Disposal
Fuel cycle High-level (HLW) Low-level (LLW) Repository Reprocessing Spent fuel
pool cask Transmutation
Debate
Nuclear power Nuclear weapons Blue Ribbon Commission on America's Nuclear Future Anti-nuclear movement Uranium mining Nuclear power phase-out
Nuclear reactors
Fission
Moderator
Light water
Aqueous homogeneous Boiling
BWR ABWR ESBWR Kerena Pressurized
AP1000 APR-1400 APR+ APWR ATMEA1 CAP1400 CPR-1000 EPR HPR-1000
ACPR1000 ACP1000 VVER many others Supercritical (SCWR) Natural fission
Heavy water
D2O
Pressurized
CANDU
CANDU 6 CANDU 9 EC6 AFCR ACR-1000 AHWR CVTR IPHWR-X PHWR KWU MZFR R3 R4 Marviken
H2O
HWLWR
ATR HW BLWR 250 Steam-generating (SGHWR)
Organic
WR-1
CO2
HWGCR
EL-4 KKN KS 150 Lucens
Graphite
by coolant
Water
H2O
AM-1 AMB-X EGP-6 RBMK
Gas
CO2
Uranium Naturel Graphite Gaz (UNGG) Magnox Advanced gas-cooled (AGR)
He
GTMHR
MHR-T UHTREX VHTR (HTGR)
PBR (PBMR)
AVR HTR-10 HTR-PM THTR-300 PMR
Molten-salt
Fluorides
Fuji MSR Liquid-fluoride thorium reactor (LFTR) Molten-Salt Reactor Experiment (MSRE) Integral Molten Salt Reactor (IMSR) TMSR-500
None
(fast-neutron)
Breeder (FBR) Integral (IFR) Liquid-metal-cooled (LMFR) Small sealed transportable autonomous (SSTAR) Traveling-wave (TWR) Energy Multiplier Module (EM2) Reduced-moderation (RMWR) Fast Breeder Test Reactor (FBTR) Dual fluid reactor (DFR)
Generation IV
Sodium (SFR)
BN-350 BN-600 BN-800 BN-1200 CFR-600 Phénix Superphénix PFBR CEFR PFR PRISM Lead Helium gas (GFR) Stable Salt Reactor (SSR)
Others
Organic nuclear reactor
Arbus Piqua Aircraft Reactor Experiment
Fusion
by confinement
Magnetic
Field-reversed configuration Levitated dipole Reversed field pinch Spheromak Stellarator Tokamak
Inertial
Bubble (acoustic) Fusor
electrostatic Laser-driven Magnetized-target Z-pinch
Other
Dense plasma focus Migma Muon-catalyzed Polywell Pyroelectric
Hellenica World - Scientific Library
Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License