ART

The Model C stellarator was the first large-scale stellarator to be built, during the early stages of fusion power research. Planned since 1952, construction began in 1961 at what is today the Princeton Plasma Physics Laboratory (PPPL).[1] The Model C followed the table-top sized Model A, and a series of Model B machines that refined the stellarator concept and provided the basis for the Model C, which intended to reach break-even conditions. Model C ultimately failed to reach this goal, producing electron temperatures of 400 eV when about 100,000 were needed. In 1969, after UK researchers confirmed that the USSR's T-3 tokamak was reaching 1000 eV, the Model C was converted to the Symmetrical Tokamak, and stellarator development at PPPL ended.

Design parameters

The Model C had a racetrack shape. The total length (of the tube axis?) was 1.2m. The plasma could have a 5-7.5 cm minor radius. Magnetic coils could produce a toroidal field (along the tube) of 35,000 Gauss.[1] It was only capable of pulsed operation.

It had a divertor in one of the straight sections. In the other it could inject 4 MW of 25 MHz ion cyclotron resonance heating (ICRH).

It had helical windings on the curved sections.
Results

An average ion temperature of 400 eV was reached in 1969.
History

Construction funding/approval was announced in April 1957.[2]

Starts operating March 1962.[3]

The Model C was reconfigured as a tokamak in 1969,[1] becoming the Symmetric Tokamak (ST).[4]
References

Stix, T. H. (1998). "Highlights in early stellarator research at Princeton" (PDF). J. Plasma Fusion Res. 1: 3–8.
Princeton Alumni Weekly, Volume 57. April 19. p9
See 1962

See 1969,1970

Further reading

Experiments on the Model C stellarator. S. Yoshikawa and T.H. Stix
A CONCEPTUAL DESIGN OF THE MODEL C STELLARATOR. 1956 Says 9" vacuum tube, but 150 ft long seems unlikely. 150,000 kW peak of pulsed power to the magnets.

vte

Fusion power, processes and devices
Core topics

Nuclear fusion
Timeline List of experiments Nuclear power Nuclear reactor Atomic nucleus Fusion energy gain factor Lawson criterion Magnetohydrodynamics Neutron Plasma

Processes,
methods
Confinement
type
Gravitational

Alpha process Triple-alpha process CNO cycle Fusor Helium flash Nova
remnants Proton-proton chain Carbon-burning Lithium burning Neon-burning Oxygen-burning Silicon-burning R-process S-process

Magnetic

Dense plasma focus Field-reversed configuration Levitated dipole Magnetic mirror
Bumpy torus Reversed field pinch Spheromak Stellarator Tokamak
Spherical Z-pinch

Inertial

Bubble (acoustic) Laser-driven Magnetized Liner Inertial Fusion

Electrostatic

Fusor Polywell

Other forms

Colliding beam Magnetized target Migma Muon-catalyzed Pyroelectric

Devices, experiments
Magnetic confinement
Tokamak

International

ITER DEMO PROTO

Americas

Canada STOR-M United States Alcator C-Mod ARC
SPARC DIII-D Electric Tokamak LTX NSTX
PLT TFTR Pegasus Brazil ETE Mexico Novillo [es]

Asia,
Oceania

China CFETR EAST
HT-7 SUNIST India ADITYA SST-1 Japan JT-60 QUEST [ja] Pakistan GLAST South Korea KSTAR

Europe

European Union JET Czech Republic COMPASS GOLEM [cs] France TFR WEST Germany ASDEX Upgrade TEXTOR Italy FTU IGNITOR Portugal ISTTOK Russia T-15 Switzerland TCV United Kingdom MAST-U START STEP

Stellarator
Americas

United States CNT CTH HIDRA HSX Model C NCSX Costa Rica SCR-1

Asia,
Oceania

Australia H-1NF Japan Heliotron J LHD

Europe

Germany WEGA Wendelstein 7-AS Wendelstein 7-X Spain TJ-II Ukraine Uragan-2M
Uragan-3M [uk]

RFP

Italy RFX United States MST

Magnetized target

Canada SPECTOR United States LINUS FRX-L – FRCHX Fusion Engine

Other

Russia GDT United States Astron LDX Lockheed Martin CFR MFTF
TMX Perhapsatron PFRC Riggatron SSPX United Kingdom Sceptre Trisops ZETA

Inertial confinement
Laser
Americas

United States Argus Cyclops Janus LIFE Long path NIF Nike Nova OMEGA Shiva

Asia

Japan GEKKO XII

Europe

European Union HiPER Czech Republic Asterix IV (PALS) France LMJ LULI2000 Russia ISKRA United Kingdom Vulcan

Non-laser

United States PACER Z machine

Applications

Thermonuclear weapon
Pure fusion weapon

International Fusion Materials Irradiation Facility ITER Neutral Beam Test Facility

Physics Encyclopedia

World

Index

Hellenica World - Scientific Library

Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License