The Plasma Physics Laboratory at the University of Saskatchewan was established in 1959 by H. M. Skarsgard. Early work centered on research with a Betatron.
Facilities
STOR-1M
Saskatchewan Torus-Modified | |
---|---|
Device Type | Tokamak |
Location | Saskatchewan, Canada |
Affiliation | University of Saskatchewan |
Technical specifications | |
Major Radius | 46 cm (18 in) |
Minor Radius | 12.5 cm (4.9 in) |
Magnetic field | 0.5–1 T (5,000–10,000 G) |
Plasma current | 30–60 kA |
History | |
Year(s) of operation | 1987 – present |
Preceded by | STOR-1M |
STOR-M stands for Saskatchewan Torus-Modified. STOR-M is a tokamak located at the University of Saskatchewan. STOR-M is a small tokamak (major radius = 46 cm, minor radius = 12.5 cm) designed for studying plasma heating, anomalous transport and developing novel tokamak operation modes and advanced diagnostics. STOR-M is capable of a 30–40 millisecond plasma discharge with a toroidal magnetic field of between 0.5 and 1 tesla and a plasma current of between 20 and 50 kiloamperes. STOR-M has also demonstrated improved confinement induced by a turbulent heating pulse, electrode biasing and compact torus injection.
References
O. Mitarai et al. 1992 Nucl. Fusion 32 1801-1809, http://www.iop.org/EJ/abstract/0029-5515/32/10/I08[dead link]
"Study of the DEF Feedback Control System in AC Operation of Superconducting Tokamak". 2007.
vte
Fusion power, processes and devices
Core topics
Nuclear fusion
Timeline List of experiments Nuclear power Nuclear reactor Atomic nucleus Fusion energy gain factor Lawson criterion Magnetohydrodynamics Neutron Plasma
Processes,
methods
Confinement
type
Gravitational
Alpha process Triple-alpha process CNO cycle Fusor Helium flash Nova
remnants Proton-proton chain Carbon-burning Lithium burning Neon-burning Oxygen-burning Silicon-burning R-process S-process
Magnetic
Dense plasma focus Field-reversed configuration Levitated dipole Magnetic mirror
Bumpy torus Reversed field pinch Spheromak Stellarator Tokamak
Spherical Z-pinch
Inertial
Bubble (acoustic) Laser-driven Magnetized Liner Inertial Fusion
Fusor Polywell
Other forms
Colliding beam Magnetized target Migma Muon-catalyzed Pyroelectric
Devices,
experiments
Magnetic
confinement
Tokamak
International
ITER DEMO PROTO
Americas
Canada STOR-M United States Alcator C-Mod ARC
SPARC DIII-D Electric Tokamak LTX NSTX
PLT TFTR Pegasus Brazil ETE Mexico Novillo [es]
Asia,
Oceania
China CFETR EAST
HT-7 SUNIST India ADITYA SST-1 Japan JT-60 QUEST [ja] Pakistan GLAST South Korea KSTAR
Europe
European Union JET Czech Republic COMPASS GOLEM [cs] France TFR WEST Germany ASDEX Upgrade TEXTOR Italy FTU IGNITOR Portugal ISTTOK Russia T-15 Switzerland TCV United Kingdom MAST-U START STEP
Stellarator
Americas
United States CNT CTH HIDRA HSX Model C NCSX Costa Rica SCR-1
Asia,
Oceania
Australia H-1NF Japan Heliotron J LHD
Europe
Germany WEGA Wendelstein 7-AS Wendelstein 7-X Spain TJ-II Ukraine Uragan-2M
Uragan-3M [uk]
Italy RFX United States MST
Magnetized target
Canada SPECTOR United States LINUS FRX-L – FRCHX Fusion Engine
Other
Russia GDT United States Astron LDX Lockheed Martin CFR MFTF
TMX Perhapsatron PFRC Riggatron SSPX United Kingdom Sceptre Trisops ZETA
Inertial
confinement
Laser
Americas
United States Argus Cyclops Janus LIFE Long path NIF Nike Nova OMEGA Shiva
Asia
Japan GEKKO XII
Europe
European Union HiPER Czech Republic Asterix IV (PALS) France LMJ LULI2000 Russia ISKRA United Kingdom Vulcan
Non-laser
United States PACER Z machine
Applications
Thermonuclear weapon
Pure fusion weapon
International Fusion Materials Irradiation Facility ITER Neutral Beam Test Facility
Hellenica World - Scientific Library
Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License