In theoretical physics, quantum geometry is the set of mathematical concepts generalizing the concepts of geometry whose understanding is necessary to describe the physical phenomena at distance scales comparable to the Planck length. At these distances, quantum mechanics has a profound effect on physical phenomena.
Quantum gravity
Main article: quantum gravity
Each theory of quantum gravity uses the term "quantum geometry" in a slightly different fashion. String theory, a leading candidate for a quantum theory of gravity, uses the term quantum geometry to describe exotic phenomena such as T-duality and other geometric dualities, mirror symmetry, topology-changing transitions , minimal possible distance scale, and other effects that challenge intuition. More technically, quantum geometry refers to the shape of a spacetime manifold as experienced by D-branes which includes quantum corrections to the metric tensor, such as the worldsheet instantons. For example, the quantum volume of a cycle is computed from the mass of a brane wrapped on this cycle. As another example, a distance between two quantum mechanical particles can be expressed in terms of the Łukaszyk–Karmowski metric.[1]
In an alternative approach to quantum gravity called loop quantum gravity (LQG), the phrase "quantum geometry" usually refers to the formalism within LQG where the observables that capture the information about the geometry are now well defined operators on a Hilbert space. In particular, certain physical observables, such as the area, have a discrete spectrum. It has also been shown that the loop quantum geometry is non-commutative.[2]
It is possible (but considered unlikely) that this strictly quantized understanding of geometry will be consistent with the quantum picture of geometry arising from string theory.
Another, quite successful, approach, which tries to reconstruct the geometry of space-time from "first principles" is Discrete Lorentzian quantum gravity.
Quantum states as differential forms
Main article: Wavefunction
See also: Differential forms
Differential forms are used to express quantum states, using the wedge product:[3]
\( {\displaystyle |\psi \rangle =\int \psi (\mathbf {x} ,t)\,|\mathbf {x} ,t\rangle \,\mathrm {d} ^{3}\mathbf {x} } \)
where the position vector is
\( {\mathbf {x}}=(x^{1},x^{2},x^{3}) \)
the differential volume element is
\( {\displaystyle \mathrm {d} ^{3}\mathbf {x} =\mathrm {d} x^{1}\!\wedge \mathrm {d} x^{2}\!\wedge \mathrm {d} x^{3}} \)
and x1, x2, x3 are an arbitrary set of coordinates, the upper indices indicate contravariance, lower indices indicate covariance, so explicitly the quantum state in differential form is:
\( {\displaystyle |\psi \rangle =\int \psi (x^{1},x^{2},x^{3},t)\,|x^{1},x^{2},x^{3},t\rangle \,\mathrm {d} x^{1}\!\wedge \mathrm {d} x^{2}\!\wedge \mathrm {d} x^{3}} \)
The overlap integral is given by:
\( {\displaystyle \langle \chi |\psi \rangle =\int \chi ^{*}\psi ~\mathrm {d} ^{3}\mathbf {x} } \)
in differential form this is
\( {\displaystyle \langle \chi |\psi \rangle =\int \chi ^{*}\psi ~\mathrm {d} x^{1}\!\wedge \mathrm {d} x^{2}\!\wedge \mathrm {d} x^{3}} \)
The probability of finding the particle in some region of space R is given by the integral over that region:
\( {\displaystyle \langle \psi |\psi \rangle =\int _{R}\psi ^{*}\psi ~\mathrm {d} x^{1}\!\wedge \mathrm {d} x^{2}\!\wedge \mathrm {d} x^{3}} \)
provided the wave function is normalized. When R is all of 3d position space, the integral must be 1 if the particle exists.
Differential forms are an approach for describing the geometry of curves and surfaces in a coordinate independent way. In quantum mechanics, idealized situations occur in rectangular Cartesian coordinates, such as the potential well, particle in a box, quantum harmonic oscillator, and more realistic approximations in spherical polar coordinates such as electrons in atoms and molecules. For generality, a formalism which can be used in any coordinate system is useful.
See also
Noncommutative geometry
References
A new concept of probability metric and its applications in approximation of scattered data sets, Łukaszyk Szymon, Computational Mechanics Volume 33, Number 4, 299–304, Springer-Verlag 2003 doi:10.1007/s00466-003-0532-2
Ashtekar, Abhay; Corichi, Alejandro; Zapata, José A. (1998), "Quantum theory of geometry. III. Non-commutativity of Riemannian structures", Classical and Quantum Gravity, 15 (10): 2955–2972, arXiv:gr-qc/9806041, Bibcode:1998CQGra..15.2955A, doi:10.1088/0264-9381/15/10/006, MR 1662415.
The Road to Reality, Roger Penrose, Vintage books, 2007, ISBN 0-679-77631-1
Further reading
Supersymmetry, Demystified, P. Labelle, McGraw-Hill (USA), 2010, ISBN 978-0-07-163641-4
Quantum Mechanics, E. Abers, Pearson Ed., Addison Wesley, Prentice Hall Inc, 2004, ISBN 9780131461000
Quantum Mechanics Demystified, D. McMahon, Mc Graw Hill (USA), 2006, ISBN 0-07-145546 9
Quantum Field Theory Demystified, D. McMahon, Mc Graw Hill (USA), 2008, ISBN 978-0-07-154382-8
External links
Space and Time: From Antiquity to Einstein and Beyond
Quantum Geometry and its Applications
Hypercomplex Numbers in Geometry and Physics
vte
Branches of physics
vte
Quantum mechanics
Background
Introduction History
timeline Glossary Classical mechanics Old quantum theory
Fundamentals
Bra–ket notation Casimir effect Coherence Coherent control Complementarity Density matrix Energy level
degenerate levels excited state ground state QED vacuum QCD vacuum Vacuum state Zero-point energy Hamiltonian Heisenberg uncertainty principle Pauli exclusion principle Measurement Observable Operator Probability distribution Quantum Qubit Qutrit Scattering theory Spin Spontaneous parametric down-conversion Symmetry Symmetry breaking
Spontaneous symmetry breaking No-go theorem No-cloning theorem Von Neumann entropy Wave interference Wave function
collapse Universal wavefunction Wave–particle duality
Matter wave Wave propagation Virtual particle
Quantum
quantum coherence annealing decoherence entanglement fluctuation foam levitation noise nonlocality number realm state superposition system tunnelling Quantum vacuum state
Mathematics
Equations
Dirac Klein–Gordon Pauli Rydberg Schrödinger
Formulations
Heisenberg Interaction Matrix mechanics Path integral formulation Phase space Schrödinger
Other
Quantum
algebra calculus
differential stochastic geometry group Q-analog
List
Interpretations
Bayesian Consistent histories Cosmological Copenhagen de Broglie–Bohm Ensemble Hidden variables Many worlds Objective collapse Quantum logic Relational Stochastic Transactional
Experiments
Afshar Bell's inequality Cold Atom Laboratory Davisson–Germer Delayed-choice quantum eraser Double-slit Elitzur–Vaidman Franck–Hertz experiment Leggett–Garg inequality Mach-Zehnder inter. Popper Quantum eraser Quantum suicide and immortality Schrödinger's cat Stern–Gerlach Wheeler's delayed choice
Science
Quantum
biology chemistry chaos cognition complexity theory computing
Timeline cosmology dynamics economics finance foundations game theory information nanoscience metrology mind optics probability social science spacetime
Technologies
Quantum technology
links Matrix isolation Phase qubit Quantum dot
cellular automaton display laser single-photon source solar cell Quantum well
laser
Extensions
Dirac sea Fractional quantum mechanics Quantum electrodynamics
links Quantum geometry Quantum field theory
links Quantum gravity
links Quantum information science
links Quantum statistical mechanics Relativistic quantum mechanics De Broglie–Bohm theory Stochastic electrodynamics
Related
Quantum mechanics of time travel Textbooks
Hellenica World - Scientific Library
Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License