# Intermediate characteristicity is not transitive

This article gives the statement, and possibly proof, of a subgroup property (i.e., intermediately characteristic subgroup)notsatisfying a subgroup metaproperty (i.e., transitive subgroup property).

View all subgroup metaproperty dissatisfactions | View all subgroup metaproperty satisfactions|Get help on looking up metaproperty (dis)satisfactions for subgroup properties

Get more facts about intermediately characteristic subgroup|Get more facts about transitive subgroup property|

## Statement

An intermediately characteristic subgroup of an intermediately characteristic subgroup need not be intermediately characteristic.

## Proof

### Example of the dihedral group

`Further information: Dihedral group:D8, Subgroup structure of dihedral group:D8`

Consider the dihedral group:D8, the dihedral group acting on a set of size four, i.e., the dihedral group with eight elements, given explicitly by the presentation:

.

The cyclic subgroup generated by is a subgroup of order four, and since all the elements outside it have order two, it is a characteristic subgroup. Being maximal, it is intermediately characteristic. Within this, the cyclic subgroup of order two generated by is again intermediately characteristic.

However, the cyclic subgroup of order two generated by is *not* intermediately characteristic in the whole group: it is isomorphic to the two-element subgroup generated by .