The Mario Schenberg (Gravitational Wave Detector, or Brazilian Graviton Project[1] or Graviton) is a spherical, resonant-mass, gravitational wave detector formerly run by the Physics Institute of the University of Sao Paulo, named after Mário Schenberg. Similar to the Dutch-run MiniGrail, the 1.15 ton, 65 cm diameter spherical test mass is suspended in a cryogenic vacuum enclosure, kept at 20 mK; and the sensors (transducers) for this detector/antenna are developed at the National Institute for Space Research (INPE), in Sao José dos Campos, Brazil.[2][3] As of 2016, the antenna has not detected any gravitational waves, and development of the antenna continues. It has been decided that the antenna will be transferred from the University of Sao Paulo to INPE. [4]
References
Aguiar; et al. (October 2002). "The status of the Brazilian spherical detector". Class. Quantum Grav. 19 (1949): 1949–1953. Bibcode:2002CQGra..19.1949A. doi:10.1088/0264-9381/19/7/397.
Aguiar; et al. (April 2005). "The Brazilian gravitational wave detector Mario Schenberg: progress and plans". Class. Quantum Grav. 22 (10): S209–S214. Bibcode:2005CQGra..22S.209A. CiteSeerX 10.1.1.497.325. doi:10.1088/0264-9381/22/10/011.
Aguiar; et al. (May 2008). "The Schenberg spherical gravitational wave detector: the first commissioning runs". Class. Quantum Grav. 25 (11): 114042. Bibcode:2008CQGra..25k4042A. doi:10.1088/0264-9381/25/11/114042.
Aguiar; et al. (October 2016). "The Mario Schenberg Gravitational Wave Antenna". Brazilian Journal of Physics. 46 (5): 596–603. doi:10.1007/s13538-016-0436-1.
vte
Gravitational-wave astronomy
Gravitational wave Gravitational-wave observatory
Detectors
Resonant mass
antennas
Active
NAUTILUS (IGEC) AURIGA (IGEC) MiniGRAIL Mario Schenberg
Past
EXPLORER (IGEC) ALLEGRO (IGEC) NIOBE (IGEC) Stanford gravitational wave detector ALTAIR GEOGRAV AGATA Weber bar
Proposed
Past proposals
GRAIL (downsized to MiniGRAIL) TIGA SFERA Graviton (downsized to Mario Schenberg)
Ground-based
Interferometers
Active
AIGO (ACIGA) CLIO Fermilab holometer GEO600 Advanced LIGO (LIGO Scientific Collaboration) KAGRA Advanced Virgo (European Gravitational Observatory)
Past
TAMA 300 TAMA 20, later known as LISM TENKO-100 Caltech 40m interferometer
Planned
INDIGO (LIGO-India)
Proposed
Cosmic Explorer Einstein Telescope
Past proposals
AIGO (LIGO-Australia)
Space-based
interferometers
Planned
LISA
Proposed
Big Bang Observer DECIGO TianQin
Pulsar timing arrays
EPTA IPTA NANOGrav PPTA
Data analysis
Einstein@Home PyCBC Zooniverse: Gravity Spy
Observations
Events
List of observations First observation (GW150914) GW151012 GW151226 GW170104 GW170608 GW170729 GW170809 GW170814 GW170817 (first neutron star merger) GW170818 GW170823 GW190412 GW190521 (first-ever light from bh-bh merger) GW190814 (first-ever "mass gap" collision)
Methods
Direct detection
Laser interferometers Resonant mass detectors Proposed: Atom interferometers Indirect detection
B-modes of CMB Pulsar timing array Binary pulsar
Theory
General relativity Tests of general relativity Metric theories Graviton
Effects / properties
Polarization Spin-flip Redshift Travel with speed of light h strain Chirp signal (chirp mass) Carried energy
Types / sources
Stochastic
Cosmic inflation-quantum fluctuation Phase transition Binary inspiral
Supermassive black holes Stellar black holes Neutron stars EMRI Continuous
Rotating neutron star Burst
Supernova or from unknown sources Hypothesis
Colliding cosmic string and other unknown sources
Hellenica World - Scientific Library
Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License