ART

TAMA 300 is a gravitational wave detector located at the Mitaka campus of the National Astronomical Observatory of Japan.[1] It is a project of the gravitational wave studies group at the Institute for Cosmic Ray Research (ICRR) of the University of Tokyo. The ICRR was established in 1976 for cosmic ray studies, and is currently developing the Kamioka Gravitational Wave Detector (KAGRA).

TAMA 300 was preceded in Mitaka by a 20m prototype TAMA 20 in years 1991-1994. Later the prototype was moved underground to Kamioka mine and renamed LISM. It operated 2000-2002 and established seismic quietness of the underground location.

Construction of the TAMA project started in 1995. Data were collected from 1999 to 2004. It adopted a Fabry–Pérot Michelson interferometer (FPMI) with power recycling. It is officially known as the 300m Laser Interferometer Gravitational Wave Antenna due to having 300 meter long (optical) arms.

The goal of the project was to develop advanced techniques needed for a future kilometer sized interferometer and to detect gravitational waves that may occur by chance within the Local Group.

Observation of TAMA has been terminated, and work moved to the 100 m Cryogenic Laser Interferometer Observatory (CLIO) prototype in Kamioka mine.

As of 2020, modified TAMA 300 is used as a testbed to develop new technologies.[2]
See also

CLIO, a prototype interferometric gravitational wave detector operating in Japan.
KAGRA, a state-of-the-art interferometric gravitational wave detector under development in Japan

References

"Official website".
"TAMA Blazes Trail for Improved Gravitational Wave Astronomy". National Astronomical Observatory of Japan. 28 April 2020. Retrieved 28 April 2020.

vte

Gravitational-wave astronomy

Gravitational wave Gravitational-wave observatory

Detectors
Resonant mass
antennas
Active

NAUTILUS (IGEC) AURIGA (IGEC) MiniGRAIL Mario Schenberg

Past

EXPLORER (IGEC) ALLEGRO (IGEC) NIOBE (IGEC) Stanford gravitational wave detector ALTAIR GEOGRAV AGATA Weber bar

Proposed

TOBA

Past proposals

GRAIL (downsized to MiniGRAIL) TIGA SFERA Graviton (downsized to Mario Schenberg)

Ground-based
Interferometers
Active

AIGO (ACIGA) CLIO Fermilab holometer GEO600 Advanced LIGO (LIGO Scientific Collaboration) KAGRA Advanced Virgo (European Gravitational Observatory)

Past

TAMA 300 TAMA 20, later known as LISM TENKO-100 Caltech 40m interferometer

Planned

INDIGO (LIGO-India)

Proposed

Cosmic Explorer Einstein Telescope

Past proposals

AIGO (LIGO-Australia)

Space-based
interferometers
Planned

LISA

Proposed

Big Bang Observer DECIGO TianQin

Pulsar timing arrays

EPTA IPTA NANOGrav PPTA

Data analysis

Einstein@Home PyCBC Zooniverse: Gravity Spy

Observations
Events

List of observations First observation (GW150914) GW151012 GW151226 GW170104 GW170608 GW170729 GW170809 GW170814 GW170817 (first neutron star merger) GW170818 GW170823 GW190412 GW190521 (first-ever light from bh-bh merger) GW190814 (first-ever "mass gap" collision)

Methods

Direct detection
Laser interferometers Resonant mass detectors Proposed: Atom interferometers Indirect detection
B-modes of CMB Pulsar timing array Binary pulsar

Theory

General relativity Tests of general relativity Metric theories Graviton

Effects / properties

Polarization Spin-flip Redshift Travel with speed of light h strain Chirp signal (chirp mass) Carried energy

Types / sources

Stochastic
Cosmic inflation-quantum fluctuation Phase transition Binary inspiral
Supermassive black holes Stellar black holes Neutron stars EMRI Continuous
Rotating neutron star Burst
Supernova or from unknown sources Hypothesis
Colliding cosmic string and other unknown sources

Physics Encyclopedia

World

Index

Hellenica World - Scientific Library

Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License