TAMA 300 is a gravitational wave detector located at the Mitaka campus of the National Astronomical Observatory of Japan.[1] It is a project of the gravitational wave studies group at the Institute for Cosmic Ray Research (ICRR) of the University of Tokyo. The ICRR was established in 1976 for cosmic ray studies, and is currently developing the Kamioka Gravitational Wave Detector (KAGRA).
TAMA 300 was preceded in Mitaka by a 20m prototype TAMA 20 in years 1991-1994. Later the prototype was moved underground to Kamioka mine and renamed LISM. It operated 2000-2002 and established seismic quietness of the underground location.
Construction of the TAMA project started in 1995. Data were collected from 1999 to 2004. It adopted a Fabry–Pérot Michelson interferometer (FPMI) with power recycling. It is officially known as the 300m Laser Interferometer Gravitational Wave Antenna due to having 300 meter long (optical) arms.
The goal of the project was to develop advanced techniques needed for a future kilometer sized interferometer and to detect gravitational waves that may occur by chance within the Local Group.
Observation of TAMA has been terminated, and work moved to the 100 m Cryogenic Laser Interferometer Observatory (CLIO) prototype in Kamioka mine.
As of 2020, modified TAMA 300 is used as a testbed to develop new technologies.[2]
See also
CLIO, a prototype interferometric gravitational wave detector operating in Japan.
KAGRA, a state-of-the-art interferometric gravitational wave detector under development in Japan
References
"Official website".
"TAMA Blazes Trail for Improved Gravitational Wave Astronomy". National Astronomical Observatory of Japan. 28 April 2020. Retrieved 28 April 2020.
vte
Gravitational-wave astronomy
Gravitational wave Gravitational-wave observatory
Detectors
Resonant mass
antennas
Active
NAUTILUS (IGEC) AURIGA (IGEC) MiniGRAIL Mario Schenberg
Past
EXPLORER (IGEC) ALLEGRO (IGEC) NIOBE (IGEC) Stanford gravitational wave detector ALTAIR GEOGRAV AGATA Weber bar
Proposed
TOBA
Past proposals
GRAIL (downsized to MiniGRAIL) TIGA SFERA Graviton (downsized to Mario Schenberg)
Ground-based
Interferometers
Active
AIGO (ACIGA) CLIO Fermilab holometer GEO600 Advanced LIGO (LIGO Scientific Collaboration) KAGRA Advanced Virgo (European Gravitational Observatory)
Past
TAMA 300 TAMA 20, later known as LISM TENKO-100 Caltech 40m interferometer
Planned
INDIGO (LIGO-India)
Proposed
Cosmic Explorer Einstein Telescope
Past proposals
AIGO (LIGO-Australia)
Space-based
interferometers
Planned
LISA
Proposed
Big Bang Observer DECIGO TianQin
Pulsar timing arrays
EPTA IPTA NANOGrav PPTA
Data analysis
Einstein@Home PyCBC Zooniverse: Gravity Spy
Observations
Events
List of observations First observation (GW150914) GW151012 GW151226 GW170104 GW170608 GW170729 GW170809 GW170814 GW170817 (first neutron star merger) GW170818 GW170823 GW190412 GW190521 (first-ever light from bh-bh merger) GW190814 (first-ever "mass gap" collision)
Methods
Direct detection
Laser interferometers Resonant mass detectors Proposed: Atom interferometers Indirect detection
B-modes of CMB Pulsar timing array Binary pulsar
Theory
General relativity Tests of general relativity Metric theories Graviton
Effects / properties
Polarization Spin-flip Redshift Travel with speed of light h strain Chirp signal (chirp mass) Carried energy
Types / sources
Stochastic
Cosmic inflation-quantum fluctuation Phase transition Binary inspiral
Supermassive black holes Stellar black holes Neutron stars EMRI Continuous
Rotating neutron star Burst
Supernova or from unknown sources Hypothesis
Colliding cosmic string and other unknown sources
Hellenica World - Scientific Library
Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License