CLIO is the Cryogenic Laser Interferometer Observatory, a prototype detector for gravitational waves. It is testing cryogenic mirror technologies for the future Kamioka Gravitational Wave Detector (KAGRA). It is located in Japan.
Overview
CLIO is an optical interferometer with two perpendicular arms each of 100 m length. The mirrors are cooled to 20 K (−253 °C); this reduces various thermal noise sources which trouble other gravity observatories, but cooling the mirrors (which are heated by the powerful laser used in the interferometer) while keeping them isolated from vibrations is difficult.[1]
CLIO is situated 1000 m underground in the Kamioka Observatory, Gifu Prefecture.[2]
CLIO is one of the science facilities for physics of the Institute for Cosmic Ray Research of the University of Tokyo.
References
K. Yamamoto; et al. (2008). "Current status of the CLIO project". Journal of Physics: Conference Series. 122 (1): 012002. arXiv:0805.2384. Bibcode:2008JPhCS.122a2002Y. doi:10.1088/1742-6596/122/1/012002.
T. Uchiyama; et al. (2006). "Cryogenic systems of the Cryogenic Laser Interferometer Observatory". Journal of Physics: Conference Series. 32 (1): 259–264. Bibcode:2006JPhCS..32..259U. doi:10.1088/1742-6596/32/1/038.
vte
Gravitational-wave astronomy
Gravitational wave Gravitational-wave observatory
Detectors
Resonant mass
antennas
Active
NAUTILUS (IGEC) AURIGA (IGEC) MiniGRAIL Mario Schenberg
Past
EXPLORER (IGEC) ALLEGRO (IGEC) NIOBE (IGEC) Stanford gravitational wave detector ALTAIR GEOGRAV AGATA Weber bar
Proposed
Past proposals
GRAIL (downsized to MiniGRAIL) TIGA SFERA Graviton (downsized to Mario Schenberg)
Ground-based
Interferometers
Active
AIGO (ACIGA) CLIO Fermilab holometer GEO600 Advanced LIGO (LIGO Scientific Collaboration) KAGRA Advanced Virgo (European Gravitational Observatory)
Past
TAMA 300 TAMA 20, later known as LISM TENKO-100 Caltech 40m interferometer
Planned
INDIGO (LIGO-India)
Proposed
Cosmic Explorer Einstein Telescope
Past proposals
AIGO (LIGO-Australia)
Space-based
interferometers
Planned
LISA
Proposed
Big Bang Observer DECIGO TianQin
Pulsar timing arrays
EPTA IPTA NANOGrav PPTA
Data analysis
Einstein@Home PyCBC Zooniverse: Gravity Spy
Observations
Events
List of observations First observation (GW150914) GW151012 GW151226 GW170104 GW170608 GW170729 GW170809 GW170814 GW170817 (first neutron star merger) GW170818 GW170823 GW190412 GW190521 (first-ever light from bh-bh merger) GW190814 (first-ever "mass gap" collision)
Methods
Direct detection
Laser interferometers Resonant mass detectors Proposed: Atom interferometers Indirect detection
B-modes of CMB Pulsar timing array Binary pulsar
Theory
General relativity Tests of general relativity Metric theories Graviton
Effects / properties
Polarization Spin-flip Redshift Travel with speed of light h strain Chirp signal (chirp mass) Carried energy
Types / sources
Stochastic
Cosmic inflation-quantum fluctuation Phase transition Binary inspiral
Supermassive black holes Stellar black holes Neutron stars EMRI Continuous
Rotating neutron star Burst
Supernova or from unknown sources Hypothesis
Colliding cosmic string and other unknown sources
Hellenica World - Scientific Library
Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License