Hypsicles (Greek: Ὑψικλῆς; c. 190 – c. 120 BCE) was an ancient Greek mathematician and astronomer known for authoring On Ascensions (Ἀναφορικός) and the Book XIV of Euclid's Elements. Hypsicles lived in Alexandria.[1]
Life and work
Although little is known about the life of Hypsicles, it is believed that he authored the astronomical work On Ascensions. The mathematician Diophantus of Alexandria noted on a definition of polygonal numbers, due to Hypsicles:[2]
If there are as many numbers as we please beginning from 1 and increasing by the same common difference, then, when the common difference is 1, the sum of all the numbers is a triangular number; when 2 a square; when 3, a pentagonal number [and so on]. And the number of angles is called after the number which exceeds the common difference by 2, and the side after the number of terms including 1.
On Ascensions
In On Ascensions (Ἀναφορικός and sometimes translated On Rising Times), Hypsicles proves a number of propositions on arithmetical progressions and uses the results to calculate approximate values for the times required for the signs of the zodiac to rise above the horizon.[3] It is thought that this is the work from which the division of the circle into 360 parts may have been adopted[4] since it divides the day into 360 parts, a division possibly suggested by Babylonian astronomy,[5] although this is a mere speculation and no actual evidence is found to support this. Heath 1921 notes, "The earliest extant Greek book in which the division of the circle into 360 degrees appears".[6]
Euclid's Elements
Hypsicles is more famously known for possibly writing the Book XIV of Euclid's Elements. The book may have been composed on the basis of a treatise by Apollonius. The book continues Euclid's comparison of regular solids inscribed in spheres, with the chief result being that the ratio of the surfaces of the dodecahedron and icosahedron inscribed in the same sphere is the same as the ratio of their volumes, the ratio being 10 3 ( 5 − 5 ) {\displaystyle {\sqrt {\tfrac {10}{3(5{\sqrt {5}})}}}} {\displaystyle {\sqrt {\tfrac {10}{3(5{\sqrt {5}})}}}}.[4]
Heath further notes, "Hypsicles says also that Aristaeus, in a work entitled Comparison of the five figures, proved that the same circle circumscribes both the pentagon of the dodecahedron and the triangle of the icosahedron inscribed in the same sphere; whether this Aristaeus is the same as the Aristaeus of the Solid Loci, the elder (Aristaeus the Elder) contemporary of Euclid, we do not know."[6]
Hypsicles letter
Hypsicles letter was a preface of the supplement taken from Euclid's Book XIV, part of the thirteen books of Euclid's Elements, featuring a treatise.[1]
"Basilides of Tyre, O Protarchus, when he came to Alexandria and met my father, spent the greater part of his sojourn with him on account of the bond between them due to their common interest in mathematics. And on one occasion, when looking into the tract written by Apollonius (Apollonius of Perga) about the comparison of the dodecahedron and icosahedron inscribed in one and the same sphere, that is to say, on the question what ratio they bear to one another, they came to the conclusion that Apollonius' treatment of it in this book was not correct; accordingly, as I understood from my father, they proceeded to amend and rewrite it. But I myself afterwards came across another book published by Apollonius, containing a demonstration of the matter in question, and I was greatly attracted by his investigation of the problem. Now the book published by Apollonius is accessible to all; for it has a large circulation in a form which seems to have been the result of later careful elaboration." "For my part, I determined to dedicate to you what I deem to be necessary by way of commentary, partly because you will be able, by reason of your proficiency in all mathematics and particularly in geometry, to pass an expert judgment upon what I am about to write, and partly because, on account of your intimacy with my father and your friendly feeling towards myself, you will lend a kindly ear to my disquisition. But it is time to have done with the preamble and to begin my treatise itself."
Notes
Thomas Little Heath (1908). "The thirteen books of Euclid's Elements".
Thomas Bulmer (1990). "Biography in Dictionary of Scientific Biography". Missing or empty url= (help)
Evans, J., (1998), The History and Practice of Ancient Astronomy, page 90. Oxford University Press.
Boyer (1991). "Euclid of Alexandria". A History of Mathematics. pp. 130–131. "In ancient times it was not uncommon to attribute to a celebrated author works that were not by him; thus, some versions of Euclid's Elements include a fourteenth and even a fifteenth book, both shown by later scholars to be apocryphal. The socalled Book XIV continues Euclid's comparison of the regular solids inscribed in a sphere, the chief results being that the ratio of the surfaces of the dodecahedron and icosahedron inscribed in the same sphere is the same as the ratio of their volumes, the ratio being that of the edge of the cube to the edge of the icosahedron, that is, \( {\displaystyle {\scriptstyle {\sqrt {\frac {10}{3(5{\sqrt {5}})}}}}.} \) It is thought that this book may have been composed by Hypsicles on the basis of a treatise (now lost) by Apollonius comparing the dodecahedron and icosahedron. (Hypsicles, who probably lived in the second half of the second century B.C., is thought to be the author of an astronomical work, De ascensionibus, from which the division of the circle into 360 parts may have been adopted.)"
Boyer (1991). "Greek Trigonometry and Mensuration". A History of Mathematics. p. 162. "It is possible that he took over from Hypsicles, who earlier had divided the day into 360 parts, a subdivision that may have been suggested by Babylonian astronomy"
Thomas Little Heath (1921). "A history of Greek mathematics".
References
Boyer, Carl B. (1991). A History of Mathematics (Second ed.). John Wiley & Sons, Inc. ISBN 0471543977.
Heath, Thomas Little (1981). A History of Greek Mathematics, Volume I. Dover publications. ISBN 0486240738.
External links
The mactutor biography of Hypsicles
Hypsicles, from Smith, Dictionary of Greek and Roman Biography and Mythology
vte
Ancient Greek astronomy
Astronomers
Aglaonice Agrippa Anaximander Andronicus Apollonius Aratus Aristarchus Aristyllus Attalus Autolycus Bion Callippus Cleomedes Cleostratus Conon Eratosthenes Euctemon Eudoxus Geminus Heraclides Hicetas Hipparchus Hippocrates of Chios Hypsicles Menelaus Meton Oenopides Philip of Opus Philolaus Posidonius Ptolemy Pytheas Seleucus Sosigenes of Alexandria Sosigenes the Peripatetic Strabo Thales Theodosius Theon of Alexandria Theon of Smyrna Timocharis
Works
Almagest (Ptolemy) On Sizes and Distances (Hipparchus) On the Sizes and Distances (Aristarchus) On the Heavens (Aristotle)
Instruments
Antikythera mechanism Armillary sphere Astrolabe Dioptra Equatorial ring Gnomon Mural instrument Triquetrum
Concepts
Callippic cycle Celestial spheres Circle of latitude CounterEarth Deferent and epicycle Equant Geocentrism Heliocentrism Hipparchic cycle Metonic cycle Octaeteris Solstice Spherical Earth Sublunary sphere Zodiac
Influences
Babylonian astronomy Egyptian astronomy
Influenced
Medieval European science Indian astronomy Medieval Islamic astronomy

Ancient Greek and Hellenistic mathematics (Euclidean geometry)
Mathematicians
(timeline)
Anaxagoras Anthemius Archytas Aristaeus the Elder Aristarchus Apollonius Archimedes Autolycus Bion Bryson Callippus Carpus Chrysippus Cleomedes Conon Ctesibius Democritus Dicaearchus Diocles Diophantus Dinostratus Dionysodorus Domninus Eratosthenes Eudemus Euclid Eudoxus Eutocius Geminus Heliodorus Heron Hipparchus Hippasus Hippias Hippocrates Hypatia Hypsicles Isidore of Miletus Leon Marinus Menaechmus Menelaus Metrodorus Nicomachus Nicomedes Nicoteles Oenopides Pappus Perseus Philolaus Philon Philonides Porphyry Posidonius Proclus Ptolemy Pythagoras Serenus Simplicius Sosigenes Sporus Thales Theaetetus Theano Theodorus Theodosius Theon of Alexandria Theon of Smyrna Thymaridas Xenocrates Zeno of Elea Zeno of Sidon Zenodorus
Treatises
Almagest Archimedes Palimpsest Arithmetica Conics (Apollonius) Catoptrics Data (Euclid) Elements (Euclid) Measurement of a Circle On Conoids and Spheroids On the Sizes and Distances (Aristarchus) On Sizes and Distances (Hipparchus) On the Moving Sphere (Autolycus) Euclid's Optics On Spirals On the Sphere and Cylinder Ostomachion Planisphaerium Sphaerics The Quadrature of the Parabola The Sand Reckoner
Problems
Angle trisection Doubling the cube Squaring the circle Problem of Apollonius
Concepts/definitions
Circles of Apollonius
Apollonian circles Apollonian gasket Circumscribed circle Commensurability Diophantine equation Doctrine of proportionality Golden ratio Greek numerals Incircle and excircles of a triangle Method of exhaustion Parallel postulate Platonic solid Lune of Hippocrates Quadratrix of Hippias Regular polygon Straightedge and compass construction Triangle center
Results
In Elements
Angle bisector theorem Exterior angle theorem Euclidean algorithm Euclid's theorem Geometric mean theorem Greek geometric algebra Hinge theorem Inscribed angle theorem Intercept theorem Pons asinorum Pythagorean theorem Thales's theorem Theorem of the gnomon
Apollonius
Apollonius's theorem
Other
Aristarchus's inequality Crossbar theorem Heron's formula Irrational numbers Menelaus's theorem Pappus's area theorem Problem II.8 of Arithmetica Ptolemy's inequality Ptolemy's table of chords Ptolemy's theorem Spiral of Theodorus
Centers
Cyrene Library of Alexandria Platonic Academy
Other
Ancient Greek astronomy Greek numerals Latin translations of the 12th century Neusis construction
Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License
Ancient Greece

Science, Technology , Medicine , Warfare, , Biographies , Life , Cities/Places/Maps , Arts , Literature , Philosophy ,Olympics, Mythology , History , Images

Medieval Greece / Byzantine Empire

Science, Technology, Arts, , Warfare , Literature, Biographies, Icons, History 
Modern Greece
