In theoretical physics, a Penrose diagram (named after mathematical physicist Roger Penrose) is a two-dimensional diagram capturing the causal relations between different points in spacetime through a conformal treatment of infinity. It is an extension of a Minkowski diagram where the vertical dimension represents time, and the horizontal dimension represents a space dimension, and slanted lines at an angle of 45° correspond to light rays ( c = 1 ) . The biggest difference is that locally, the metric on a Penrose diagram is conformally equivalent to the actual metric in spacetime. The conformal factor is chosen such that the entire infinite spacetime is transformed into a Penrose diagram of finite size, with infinity on the boundary of the diagram. For spherically symmetric spacetimes, every point in the Penrose diagram corresponds to a 2-dimensional sphere \( (\theta ,\phi ) \).

Basic properties

While Penrose diagrams share the same basic coordinate vector system of other space-time diagrams for local asymptotically flat spacetime, it introduces a system of representing distant spacetime by shrinking or "crunching" distances that are further away. Straight lines of constant time and straight lines of constant space coordinates therefore become hyperbolae, which appear to converge at points in the corners of the diagram. These points and boundaries represent "conformal infinity" for space-time, which was first introduced by Penrose in 1963.[1]

Penrose diagrams are more properly (but less frequently) called Penrose–Carter diagrams (or Carter–Penrose diagrams), acknowledging both Brandon Carter and Roger Penrose, who were the first researchers to employ them. They are also called conformal diagrams, or simply spacetime diagrams (although the latter may refer to Minkowski diagrams).

Two lines drawn at 45° angles should intersect in the diagram only if the corresponding two light rays intersect in the actual spacetime. So, a Penrose diagram can be used as a concise illustration of spacetime regions that are accessible to observation. The diagonal boundary lines of a Penrose diagram correspond to the "infinity" or to singularities where light rays must end. Thus, Penrose diagrams are also useful in the study of asymptotic properties of spacetimes and singularities. An infinite static Minkowski universe, coordinates ( x , t ) {\displaystyle (x,t)} (x, t) is related to Penrose coordinates ( (u,v) by:

\( \tan(u \pm v) = x \pm t \)

The corners of the Penrose diamond, which represent the spacelike and timelike conformal infinities, are \( \pi /2 \) from the origin.

Black holes

Penrose diagrams are frequently used to illustrate the causal structure of spacetimes containing black holes. Singularities are denoted by a spacelike boundary, unlike the timelike boundary found on conventional space-time diagrams. This is due to the interchanging of timelike and spacelike coordinates within the horizon of a black hole (since space is uni-directional within the horizon, just as time is uni-directional outside the horizon). The singularity is represented by a spacelike boundary to make it clear that once an object has passed the horizon it will inevitably hit the singularity even if it attempts to take evasive action.

Penrose diagrams are often used to illustrate the hypothetical Einstein–Rosen bridge connecting two separate universes in the maximally extended Schwarzschild black hole solution. The precursors to the Penrose diagrams were Kruskal–Szekeres diagrams. (The Penrose diagram adds to Kruskal and Szekeres' diagram the conformal crunching of the regions of flat space-time far from the hole.) These introduced the method of aligning the event horizon into past and future horizons oriented at 45° angles (since one would need to travel faster than light to cross from the Schwarzschild radius back into flat spacetime); and splitting the singularity into past and future horizontally-oriented lines (since the singularity "cuts off" all paths into the future once one enters the hole).

The Einstein–Rosen bridge closes off (forming "future" singularities) so rapidly that passage between the two asymptotically flat exterior regions would require faster-than-light velocity, and is therefore impossible. In addition, highly blue-shifted light rays (called a "blue sheet") would make it impossible for anyone to pass through.

Penrose Diagrams of various black hole solutions

The maximally extended solution does not describe a typical black hole created from the collapse of a star, as the surface of the collapsed star replaces the sector of the solution containing the past-oriented "white hole" geometry and other universe.

While the basic space-like passage of a static black hole cannot be traversed, the Penrose diagrams for solutions representing rotating and/or electrically charged black holes illustrate these solutions' inner event horizons (lying in the future) and vertically oriented singularities, which open up what is known as a time-like "wormhole" allowing passage into future universes. In the case of the rotating hole, there is also a "negative" universe entered through a ring-shaped singularity (still portrayed as a line in the diagram) that can be passed through if entering the hole close to its axis of rotation. These features of the solutions are, however, not stable and not believed to be a realistic description of the interior regions of such black holes; the true character of their interiors is still an open question.

See also

Causality

Causal structure

Conformal cyclic cosmology

Weyl transformation

References

Penrose, Roger (15 January 1963). "Asymptotic properties of fields and space-times". Physical Review Letters. 10 (2). doi:10.1103/PhysRevLett.10.66.

d'Inverno, Ray (1992). Introducing Einstein's Relativity. Oxford: Oxford University Press. ISBN 978-0-19-859686-8. See Chapter 17 (and various succeeding sections) for a very readable introduction to the concept of conformal infinity plus examples.

Frauendiener, Jörg (2004). "Conformal Infinity". Living Reviews in Relativity. 7 (1): 1. Bibcode:2004LRR.....7....1F. doi:10.12942/lrr-2004-1. PMC 5256109. PMID 28179863.

Carter, Brandon (1966). "Complete Analytic Extension of the Symmetry Axis of Kerr's Solution of Einstein's Equations". Phys. Rev. 141 (4): 1242–1247. Bibcode:1966PhRv..141.1242C. doi:10.1103/PhysRev.141.1242. See also on-line version (requires a subscription to access)

Hawking, Stephen & Ellis, G. F. R. (1973). The Large Scale Structure of Space-Time. Cambridge: Cambridge University Press. ISBN 978-0-521-09906-6. See Chapter 5 for a very clear discussion of Penrose diagrams (the term used by Hawking & Ellis) with many examples.

Kaufmann, William J. III (1977). The Cosmic Frontiers of General Relativity. Little Brown & Co. ISBN 978-0-316-48341-4. Really breaks down the transition from simple Minkowski diagrams, to Kruskal-Szekeres diagrams to Penrose diagrams, and goes into much detail the facts and fiction concerning wormholes. Plenty of easy to understand illustrations. A less involved, but still very informative book is his William J. Kaufmann (1979). Black Holes and Warped Spacetime. W H Freeman & Co (Sd). ISBN 978-0-7167-1153-7.

External links

Media related to Penrose diagrams at Wikimedia Commons

vte

Relativity

Special relativity

Background

Principle of relativity (Galilean relativity Galilean transformation) Special relativity Doubly special relativity

Fundamental

concepts

Frame of reference Speed of light Hyperbolic orthogonality Rapidity Maxwell's equations Proper length Proper time Relativistic mass

Formulation

Lorentz transformation

Phenomena

Time dilation Mass–energy equivalence Length contraction Relativity of simultaneity Relativistic Doppler effect Thomas precession Ladder paradox Twin paradox

Spacetime

Light cone World line Minkowski diagram Biquaternions Minkowski space

General relativity

Background

Introduction Mathematical formulation

Fundamental

concepts

Equivalence principle Riemannian geometry Penrose diagram Geodesics Mach's principle

Formulation

ADM formalism BSSN formalism Einstein field equations Linearized gravity Post-Newtonian formalism Raychaudhuri equation Hamilton–Jacobi–Einstein equation Ernst equation

Phenomena

Black hole Event horizon Singularity Two-body problem

Gravitational waves: astronomy detectors (LIGO and collaboration Virgo LISA Pathfinder GEO) Hulse–Taylor binary

Other tests: precession of Mercury lensing redshift Shapiro delay frame-dragging / geodetic effect (Lense–Thirring precession) pulsar timing arrays

Advanced

theories

Brans–Dicke theory Kaluza–Klein Quantum gravity

Solutions

Cosmological: Friedmann–Lemaître–Robertson–Walker (Friedmann equations) Kasner BKL singularity Gödel Milne

Spherical: Schwarzschild (interior Tolman–Oppenheimer–Volkoff equation) Reissner–Nordström Lemaître–Tolman

Axisymmetric: Kerr (Kerr–Newman) Weyl−Lewis−Papapetrou Taub–NUT van Stockum dust discs

Others: pp-wave Ozsváth–Schücking metric

Scientists

Poincaré Lorentz Einstein Hilbert Schwarzschild de Sitter Weyl Eddington Friedmann Lemaître Milne Robertson Chandrasekhar Zwicky Wheeler Choquet-Bruhat Kerr Zel'dovich Novikov Ehlers Geroch Penrose Hawking Taylor Hulse Bondi Misner Yau Thorne Weiss others

Categories

Theory of relativity

vte

Roger Penrose

Books

The Emperor's New Mind (1989) Shadows of the Mind (1994) The Road to Reality (2004) Cycles of Time (2010) Fashion, Faith, and Fantasy in the New Physics of the Universe (2016)

Coauthored books

The Nature of Space and Time (with Stephen Hawking) (1996) The Large, the Small and the Human Mind (with Abner Shimony, Nancy Cartwright and Stephen Hawking) (1997) White Mars or, The Mind Set Free (with Brian W. Aldiss) (1999)

Academic works

Techniques of Differential Topology in Relativity (1972) Spinors and Space-Time: Volume 1, Two-Spinor Calculus and Relativistic Fields (with Wolfgang Rindler) (1987) Spinors and Space-Time: Volume 2, Spinor and Twistor Methods in Space-Time Geometry (with Wolfgang Rindler) (1988)

Concepts

Twistor theory Spin network Abstract index notation Black hole bomb Geometry of spacetime Cosmic censorship Weyl curvature hypothesis Penrose inequalities Penrose interpretation of quantum mechanics Moore–Penrose inverse Newman–Penrose formalism Penrose diagram Penrose–Hawking singularity theorems Penrose inequality Penrose process Penrose tiling Penrose stairs Penrose graphical notation Penrose transform Penrose-Terrell effect Orchestrated objective reduction/Penrose–Lucas argument FELIX experiment Trapped surface Andromeda paradox Conformal cyclic cosmology

Related

Lionel Penrose (father) Oliver Penrose (brother) Jonathan Penrose (brother) Shirley Hodgson (sister) John Beresford Leathes (grandfather) Illumination problem Quantum mind

Hellenica World - Scientific Library

Retrieved from "http://en.wikipedia.org/"

All text is available under the terms of the GNU Free Documentation License