ART

Μοντέλο AKLT
αγγλικά : AKLT Model
γαλλικά :
γερμανικά :

Το μοντέλο AKLT είναι μια επέκταση του μονοδιάστατου κβαντικού μοντέλου σπιν του Heisenberg. Η πρόταση και η ακριβής λύση αυτού του μοντέλου από τους Affleck, Lieb, Kennedy και Tasaki [1] παρείχαν κρίσιμες πληροφορίες για τη φυσική της αλυσίδας spin-1 Heisenberg. [2] [3] [4] [5] Έχει επίσης χρησιμεύσει ως ένα χρήσιμο παράδειγμα για έννοιες όπως η στερεή τάξη δεσμών σθένους, η συμμετρία προστατευμένη τοπολογική τάξη [6] [7] [8] [9] και γινόμενα πινάκων κυματοοσυναρτήσεων κατάστασσης .

Ένα σημαντικό κίνητρο για το μοντέλο AKLT ήταν η αλυσίδα Majumdar – Ghosh. Επειδή δύο από κάθε σύνολο τριών γειτονικών σπιν σε θεμελιώδη κατάσταση Majumdar-Ghosh συνδέονται σε ένα μονό singlet ή δεσμό σθένους, τα τρια σπιν μαζί δεν μπορούν ποτέ να βρεθούν σε κατάσταση σπιν 3/2. Στην πραγματικότητα, η Majumdar – Ghosh Χαμιλτονιανή δεν είναι παρά το άθροισμα όλων των προβολ;vν τριών γειτονικών σπιν σε μια κατάσταση 3/2.

Η βασική εικόνα τηε δημοσίευσης AKLT ήταν ότι αυτή η κατασκευή θα μπορούσε να γενικευθεί για την απόκτηση ακριβώς επιλύσιμων μοντέλων για μεγέθη σπιν εκτός από το 1/2. Ακριβώς όπως το ένα άκρο ενός δεσμού σθένους είναι ένα σπιν 1/2, τα άκρα δύο δεσμών σθένους μπορούν να συνδυαστούν σε ένα σπιν 1, τρία σε ένα σπιν References

Affleck, Ian; Kennedy, Tom; Lieb, Elliott H.; Tasaki, Hal (1987). "Rigorous results on valence-bond ground states in antiferromagnets". Physical Review Letters. 59 (7): 799–802. Bibcode:1987PhRvL..59..799A. doi:10.1103/PhysRevLett.59.799. PMID 10035874.
Haldane, F. D. M. (1983). "Nonlinear Field Theory of Large-Spin Heisenberg Antiferromagnets: Semiclassically Quantized Solitons of the One-Dimensional Easy-Axis Néel State". Phys. Rev. Lett. 50: 1153. Bibcode:1983PhRvL..50.1153H. doi:10.1103/physrevlett.50.1153.
Haldane, F. D. M. (1983). "Continuum dynamics of the 1-D Heisenberg antiferromagnet: Identification with the O(3) nonlinear sigma model". Phys. Lett. A. 93: 464. Bibcode:1983PhLA...93..464H. doi:10.1016/0375-9601(83)90631-x.
Affleck, I.; Haldane, F. D. M. (1987). "Critical theory of quantum spin chains". Phys. Rev. B. 36: 5291. Bibcode:1987PhRvB..36.5291A. doi:10.1103/physrevb.36.5291. PMID 9942166.
Affleck, I. (1989). "Quantum spin chains and the Haldane gap". J. Phys.: Condens. Matter. 1: 3047. Bibcode:1989JPCM....1.3047A. doi:10.1088/0953-8984/1/19/001.
Gu, Zheng-Cheng; Wen, Xiao-Gang (2009). "Tensor-Entanglement-Filtering Renormalization Approach and Symmetry-Protected Topological Order". Phys. Rev. B. 80: 155131. arXiv:0903.1069. Bibcode:2009PhRvB..80o5131G. doi:10.1103/physrevb.80.155131.
Pollmann, F.; Berg, E.; Turner, Ari M.; Oshikawa, Masaki (2012). "Symmetry protection of topological phases in one-dimensional quantum spin systems" (PDF). Phys. Rev. B. 85 (7): 075125. arXiv:0909.4059. Bibcode:2012PhRvB..85g5125P. doi:10.1103/PhysRevB.85.075125.
Chen, Xie; Gu, Zheng-Cheng; Wen, Xiao-Gang (2011). "Classification of Gapped Symmetric Phases in 1D Spin Systems". Phys. Rev. B. 83: 035107. arXiv:1008.3745. Bibcode:2011PhRvB..83c5107C. doi:10.1103/physrevb.83.035107.
Chen, Xie; Liu, Zheng-Xin; Wen, Xiao-Gang (2011). "2D symmetry-protected topological orders and their protected gapless edge excitations". Phys. Rev. B. 84: 235141. arXiv:1106.4752. Bibcode:2011PhRvB..84w5141C. doi:10.1103/physrevb.84.235141.
Schollwöck, Ulrich (2011). "The density-matrix renormalization group in the age of matrix product states". Annals of Physics. 326: 96–192. arXiv:1008.3477. Bibcode:2011AnPhy.326...96S. doi:10.1016/j.aop.2010.09.012.
Kennedy, Tom (1990). "Exact diagonalisations of open spin-1 chains". J. Phys. Condens. Matter. 2 (26): 5737. Bibcode:1990JPCM....2.5737K. doi:10.1088/0953-8984/2/26/010.
White, Steven; Huse, David (1993). "Numerical renormalization-group study of low-lying eigenstates of the antiferromagnetic S=1 Heisenberg chain". Phys. Rev. B. 48 (6): 3844–3852. Bibcode:1993PhRvB..48.3844W. doi:10.1103/PhysRevB.48.3844.
Hagiwara, M.; Katsumata, K.; Affleck, Ian; Halperin, B.I.; Renard, J.P. (1990). "Observation of S=1/2 degrees of freedom in an S=1 linear-chain Heisenberg antiferromagnet". Phys. Rev. Lett. 65 (25): 3181–3184. Bibcode:1990PhRvL..65.3181H. doi:10.1103/PhysRevLett.65.3181. PMID 10042802.
Wei, T.-C.; Affleck, I.; Raussendorf, R. (2011). "Affleck-Kennedy-Lieb-Tasaki State on a Honeycomb Lattice is a Universal Quantum Computational Resource". Phys. Rev. Lett. 106 (7): 070501. arXiv:1009.2840. Bibcode:2011PhRvL.106g0501W. doi:10.1103/PhysRevLett.106.070501. PMID 21405505.
Greiter, Martin; Rachel, Stephan; Schuricht, Dirk (2007). "Exact results for SU(3) spin chains: Trimer states, valence bond solids, and their parent Hamiltonians". Phys. Rev. B. 75 (6): 060401(R). arXiv:cond-mat/0701354. Bibcode:2007PhRvB..75f0401G. doi:10.1103/PhysRevB.75.060401.
Greiter, Martin; Rachel, Stephan (2007). "Valence bond solids for SU(n) spin chains: Exact models, spinon confinement, and the Haldane gap". Phys. Rev. B. 75 (18): 184441. arXiv:cond-mat/0702443. Bibcode:2007PhRvB..75r4441G. doi:10.1103/PhysRevB.75.184441.
Tu, Hong-Hao; Zhang, Guang-Ming; Xiang, Tao (2008). "Class of exactly solvable SO(n) symmetric spin chains with matrix product ground states". Phys. Rev. B. 78 (9): 094404. arXiv:0806.1839. Bibcode:2008PhRvB..78i4404T. doi:10.1103/PhysRevB.78.094404.
Schuricht, Dirk; Rachel, Stephan (2008). "Valence bond solid states with symplectic symmetry". Phys. Rev. B. 78 (1): 014430. arXiv:0805.3918. Bibcode:2008PhRvB..78a4430S. doi:10.1103/PhysRevB.78.014430.
Santos, R. A.; Paraan, F. N. C.; Korepin, V. E.; Klümper, A. (2012). "Entanglement spectra of the q-deformed Affleck–Kennedy–Lieb–Tasaki model and matrix product states". EPL. 98 (3): 37005. arXiv:1112.0517. Bibcode:2012EL.....9837005S. doi:10.1209/0295-5075/98/37005. ISSN 0295-5075.3/2 κ.λπ.

Εγκυκλοπαίδεια Φυσικής

Κόσμος

Αλφαβητικός κατάλογος

Hellenica World - Scientific Library

Από τη ελληνική Βικιπαίδεια http://el.wikipedia.org . Όλα τα κείμενα είναι διαθέσιμα υπό την GNU Free Documentation License