ART

In philosophy, philosophy of physics deals with conceptual and interpretational issues in modern physics, many of which overlap with research done by certain kinds of theoretical physicists. Philosophy of physics can be broadly lumped into three areas:

interpretations of quantum mechanics: mainly concerning issues with how to formulate an adequate response to the measurement problem and understand what the theory says about reality
the nature of space and time: Are space and time substances, or purely relational? Is simultaneity conventional or only relative? Is temporal asymmetry purely reducible to thermodynamic asymmetry?
inter-theoretic relations: the relationship between various physical theories, such as thermodynamics and statistical mechanics. This overlaps with the issue of scientific reduction.

Philosophy of space and time
Main article: Philosophy of space and time

The existence and nature of space and time (or space-time) are central topics in the philosophy of physics.[1]
Time
Main article: Time in physics
Time, in many philosophies, is seen as change.

Time is often thought to be a fundamental quantity (that is, a quantity which cannot be defined in terms of other quantities), because time seems like a fundamentally basic concept, such that one cannot define it in terms of anything simpler. However, certain theories such as loop quantum gravity claim that spacetime is emergent. As Carlo Rovelli, one of the founders of loop quantum gravity has said: "No more fields on spacetime: just fields on fields".[2] Time is defined via measurement—by its standard time interval. Currently, the standard time interval (called "conventional second", or simply "second") is defined as 9,192,631,770 oscillations of a hyperfine transition in the 133 caesium atom. (ISO 31-1). What time is and how it works follows from the above definition. Time then can be combined mathematically with the fundamental quantities of space and mass to define concepts such as velocity, momentum, energy, and fields.

Both Newton and Galileo,[3] as well as most people up until the 20th century, thought that time was the same for everyone everywhere. The modern conception of time is based on Einstein's theory of relativity and Minkowski's spacetime, in which rates of time run differently in different inertial frames of reference, and space and time are merged into spacetime. Time may be quantized, with the theoretical smallest time being on the order of the Planck time. Einstein's general relativity as well as the redshift of the light from receding distant galaxies indicate that the entire Universe and possibly space-time itself began about 13.8 billion years ago in the Big Bang. Einstein's theory of special relativity mostly (though not universally) made theories of time where there is something metaphysically special about the present seem much less plausible, as the reference-frame-dependence of time seems to not allow the idea of a privileged present moment.
Time travel
Main article: Time travel

Some theories, most notably special and general relativity, suggest that suitable geometries of spacetime, or certain types of motion in space, may allow time travel into the past and future. Concepts that aid such understanding include the closed timelike curve.

Albert Einstein's special theory of relativity (and, by extension, the general theory) predicts time dilation that could be interpreted as time travel. The theory states that, relative to a stationary observer, time appears to pass more slowly for faster-moving bodies: for example, a moving clock will appear to run slow; as a clock approaches the speed of light its hands will appear to nearly stop moving. The effects of this sort of time dilation are discussed further in the popular "twin paradox". These results are experimentally observable and affect the operation of GPS satellites and other high-tech systems used in daily life.

A second, similar type of time travel is permitted by general relativity. In this type a distant observer sees time passing more slowly for a clock at the bottom of a deep gravity well, and a clock lowered into a deep gravity well and pulled back up will indicate that less time has passed compared to a stationary clock that stayed with the distant observer.

Many in the scientific community believe that backward time travel is highly unlikely, because it violates causality[4] i.e. the logic of cause and effect. For example, what happens if you attempt to go back in time and kill yourself at an earlier stage in your life (or your grandfather, which leads to the grandfather paradox)? Stephen Hawking once suggested that the absence of tourists from the future constitutes a strong argument against the existence of time travel— a variant of the Fermi paradox, with time travelers instead of alien visitors.[4]
Space
Main article: Space

Space is one of the few fundamental quantities in physics, meaning that it cannot be defined via other quantities because there is nothing more fundamental known at present. Thus, similar to the definition of other fundamental quantities (like time and mass), space is defined via measurement. Currently, the standard space interval, called a standard metre or simply metre, is defined as the distance traveled by light in a vacuum during a time interval of 1/299792458 of a second (exact).

In classical physics, space is a three-dimensional Euclidean space where any position can be described using three coordinates and parameterised by time. Special and general relativity use four-dimensional spacetime rather than three-dimensional space; and currently there are many speculative theories which use more than four spatial dimensions.
Philosophy of quantum mechanics
Main article: Interpretation of quantum mechanics

Quantum mechanics is a large focus of contemporary philosophy of physics, specifically concerning the correct interpretation of quantum mechanics. Very broadly, much of the philosophical work that is done in quantum theory is trying to make sense of superposition states:[5] the property that particles seem to not just be in one determinate position at one time, but are somewhere 'here', and also 'there' at the same time. Such a radical view turns many common sense metaphysical ideas on their head. Much of contemporary philosophy of quantum mechanics aims to make sense of what the very empirically successful formalism of quantum mechanics tells us about the physical world.
The Everett interpretation
Main article: Many-worlds interpretation

The Everett, or many-worlds interpretation of quantum mechanics claims that the wave-function of a quantum system is telling us claims about the reality of that physical system. It denies wavefunction collapse, and claims that superposition states should be interpreted literally as describing the reality of many-worlds where objects are located, and not simply indicating the indeterminacy of those variables. This is sometimes argued as a corollary of scientific realism,[6] which states that scientific theories aim to give us literally true descriptions of the world.

One issue for the Everett interpretation is the role that probability plays on this account. The Everettian account is completely deterministic, whereas probability seems to play an ineliminable role in quantum mechanics.[7] Contemporary Everettians have argued that one can get an account of probability that follows the Born Rule through certain decision-theoretic proofs.[8]

Physicist Roland Omnés noted that it is impossible to experimentally differentiate between Everett's view, which says that as the wave-function decoheres into distinct worlds, each of which exists equally, and the more traditional view that says that a decoherent wave-function leaves only one unique real result. Hence, the dispute between the two views represents a great "chasm." "Every characteristic of reality has reappeared in its reconstruction by our theoretical model; every feature except one: the uniqueness of facts."[9]
Uncertainty principle
Main article: Uncertainty principle

The uncertainty principle is a mathematical relation asserting an upper limit to the accuracy of the simultaneous measurement of any pair of conjugate variables, e.g. position and momentum. In the formalism of operator notation, this limit is the evaluation of the commutator of the variables' corresponding operators.

The uncertainty principle arose as an answer to the question: How does one measure the location of an electron around a nucleus if an electron is a wave? When quantum mechanics was developed, it was seen to be a relation between the classical and quantum descriptions of a system using wave mechanics.

In March 1927, working in Niels Bohr's institute, Werner Heisenberg formulated the principle of uncertainty thereby laying the foundation of what became known as the Copenhagen interpretation of quantum mechanics. Heisenberg had been studying the papers of Paul Dirac and Pascual Jordan. He discovered a problem with measurement of basic variables in the equations. His analysis showed that uncertainties, or imprecisions, always turned up if one tried to measure the position and the momentum of a particle at the same time. Heisenberg concluded that these uncertainties or imprecisions in the measurements were not the fault of the experimenter, but fundamental in nature and are inherent mathematical properties of operators in quantum mechanics arising from definitions of these operators.[10]

The term Copenhagen interpretation of quantum mechanics was often used interchangeably with and as a synonym for Heisenberg's uncertainty principle by detractors (such as Einstein and the physicist Alfred Landé) who believed in determinism and saw the common features of the Bohr–Heisenberg theories as a threat. Within the Copenhagen interpretation of quantum mechanics the uncertainty principle was taken to mean that on an elementary level, the physical universe does not exist in a deterministic form, but rather as a collection of probabilities, or possible outcomes. For example, the pattern (probability distribution) produced by millions of photons passing through a diffraction slit can be calculated using quantum mechanics, but the exact path of each photon cannot be predicted by any known method. The Copenhagen interpretation holds that it cannot be predicted by any method, not even with theoretically infinitely precise measurements.
History of the philosophy of physics
Aristotelian physics

Aristotelian physics viewed the universe as a sphere with a center. Matter, composed of the classical elements, earth, water, air, and fire, sought to go down towards the center of the universe, the center of the earth, or up, away from it. Things in the aether such as the moon, the sun, planets, or stars circled the center of the universe.[11] Movement is defined as change in place,[11] i.e. space.[12]
Newtonian physics

The implicit axioms of Aristotelian physics with respect to movement of matter in space were superseded in Newtonian physics by Newton's First Law of Motion.[13]

Every body perseveres in its state either of rest or of uniform motion in a straight line, except insofar as it is compelled to change its state by impressed forces.

"Every body" includes the Moon, and an apple; and includes all types of matter, air as well as water, stones, or even a flame. Nothing has a natural or inherent motion.[14] Absolute space being three-dimensional Euclidean space, infinite and without a center.[14] Being "at rest" means being at the same place in absolute space over time.[15] The topology and affine structure of space must permit movement in a straight line at a uniform velocity; thus both space and time must have definite, stable dimensions.[16]
Leibniz

Gottfried Wilhelm Leibniz, 1646 – 1716, was a contemporary of Newton. He contributed a fair amount to the statics and dynamics emerging around him, often disagreeing with Descartes and Newton. He devised a new theory of motion (dynamics) based on kinetic energy and potential energy, which posited space as relative, whereas Newton was thoroughly convinced that space was absolute. An important example of Leibniz's mature physical thinking is his Specimen Dynamicum of 1695.[17]

Until the discovery of subatomic particles and the quantum mechanics governing them, many of Leibniz's speculative ideas about aspects of nature not reducible to statics and dynamics made little sense. For instance, he anticipated Albert Einstein by arguing, against Newton, that space, time and motion are relative, not absolute:[18] "As for my own opinion, I have said more than once, that I hold space to be something merely relative, as time is, that I hold it to be an order of coexistences, as time is an order of successions."[19]
Quotes from Einstein's work on the importance of the philosophy of physics
Einstein was interested in the philosophical implications of his theory.

Albert Einstein was extremely interested in the philosophical conclusions of his work. He writes:

"I fully agree with you about the significance and educational value of methodology as well as history and philosophy of science. So many people today—and even professional scientists—seem to me like somebody who has seen thousands of trees but has never seen a forest. A knowledge of the historic and philosophical background gives that kind of independence from prejudices of his generation from which most scientists are suffering. This independence created by philosophical insight is—in my opinion—the mark of distinction between a mere artisan or specialist and a real seeker after truth." Einstein. letter to Robert A. Thornton, 7 December 1944. EA 61–574.

Elsewhere:

"How does it happen that a properly endowed natural scientist comes to concern himself with epistemology? Is there no more valuable work in his specialty? I hear many of my colleagues saying, and I sense it from many more, that they feel this way. I cannot share this sentiment. ... Concepts that have proven useful in ordering things easily achieve such an authority over us that we forget their earthly origins and accept them as unalterable givens. Thus they come to be stamped as 'necessities of thought,' 'a priori givens,' etc."

"The path of scientific advance is often made impassable for a long time through such errors. For that reason, it is by no means an idle game if we become practiced in analyzing the long-commonplace concepts and exhibiting [revealing, exposing? -Ed.] those circumstances upon which their justification and usefulness depend, how they have grown up, individually, out of the givens of experience. By this means, their all-too-great authority will be broken." Einstein, 1916, "Memorial notice for Ernst Mach," Physikalische Zeitschrift 17: 101–02.

See also: Ilse Rosenthal-Schneider
See also

Philosophy portal

Anthropic principle
Arrow of time
Causality (physics)
Causal closure
Constructor theory
Determinism
Digital philosophy
Digital physics
Mind-body dualism
Field (physics)
Functional decomposition
Fundamental interaction
Holism
Instrumentalism
Laws of thermodynamics
Macroscopic
Mesoscopic scale
Modal realism
Monism
Pluralism
Physical ontology

Naturalism:
Metaphysical
Methodological
Operationalism
Phenomenology
Phenomenology (particle physics)
Philosophy of:
Classical physics
Space & time
Thermodynamics & statistical mechanics
Motion
Physical
Bodies
Information
Law
System
Physicalism
Physics
Aristotle
Physics envy

Quantum theory:
Bohr-Einstein debates
Einstein's thought experiments
EPR paradox
Interpretations of
Metaphysics
Mysticism
Reductionism
Relativity:
General
Special
Space
Absolute theory
Container space
Free space
Relational space
Relational theory
Spacetime
Supervenience
Symmetry in physics
Theophysics
Time in physics

References

Maudlin, Tim (2012). Philosophy of Physics: Space and Time. Princeton University Press. p. xi. ISBN 978-0691143095. Retrieved 3 October 2017. "...the existence and nature of space and time (or space-time) is a central topic."
Rovelli, C. (2004). Quantum Gravity. Cambridge Monographs on Mathematical Physics. p. 71.
Roger Penrose, 2004. The Road to Reality: A Complete Guide to the Laws of the Universe. London: Jonathan Cape. ISBN 0-224-04447-8 (hardcover), 0-09-944068-7 (paperback).
Bolonkin, Alexander (2011). Universe, Human mmortality and Future Human Evaluation. Elsevier. p. 32. ISBN 978-0-12-415810-8. Extract of page 32
BristolPhilosophy (19 February 2013). "Eleanor Knox (KCL) – The Curious Case of the Vanishing Spacetime". Retrieved 7 April 2018 – via YouTube.
David Wallace, 'The Emergent Multiverse', pp. 1–10
David Wallace, 'The Emergent Multiverse', pp. 113–117
David Wallace, 'The Emergent Multiverse', pg. 157–189
Omnès, Roland (2002). "11". Quantum philosophy : understanding and interpreting contemporary science (in French) (First paperback printing, 2002, translated by Arturo Spangalli. ed.). Princeton: Princeton University Press. p. 213. ISBN 978-1400822867.
Niels Bohr, Atomic Physics and Human Knowledge, p. 38
Tim Maudlin (2012-07-22). Philosophy of Physics: Space and Time: Space and Time (Princeton Foundations of Contemporary Philosophy) (p. 3). Princeton University Press. Kindle Edition."Because it is a sphere, Aristotle's universe contains a geometrically privileged center, and Aristotle makes reference to that center in characterizing the natural motions of different sorts of matter. “Upward,”“downward,” and “uniform circular motion” all are defined in terms of the center of the universe."
Tim Maudlin (2012-07-22). Philosophy of Physics: Space and Time: Space and Time (Princeton Foundations of Contemporary Philosophy) (p. 4). Princeton University Press. Kindle Edition. "Aristotle adopts the concept of space, and the correlative concept of motion, that we all intuitively employ."
Tim Maudlin (2012-07-22). Philosophy of Physics: Space and Time: Space and Time (Princeton Foundations of Contemporary Philosophy) (pp. 4–5). Princeton University Press. Kindle Edition. "Newtonian physics is implicit in his First Law of Motion: Law I : Every body perseveres in its state either of rest or of uniform motion in a straight line, except insofar as it is compelled to change its state by impressed forces. 1 This single law smashes the Aristotelian universe to smithereens."
Tim Maudlin (2012-07-22). Philosophy of Physics: Space and Time: Space and Time (Princeton Foundations of Contemporary Philosophy) (pp. 5). Princeton University Press. Kindle Edition.
Tim Maudlin (2012-07-22). Philosophy of Physics: Space and Time: Space and Time (Princeton Foundations of Contemporary Philosophy) (pp. 9–10). Princeton University Press. Kindle Edition. "Newton believed in the existence of a spatial arena with the geometrical structure of E3. He believed that this infinite three-dimensional space exists at every moment of time. And he also believed something much more subtle and controversial, namely, that identically the same points of space persist through time."
Tim Maudlin (2012-07-22). Philosophy of Physics: Space and Time: Space and Time (Princeton Foundations of Contemporary Philosophy) (p. 12). Princeton University Press. Kindle Edition. "...space must have a topology, an affine structure, and a metric; time must be one-dimensional with a topology and a metric; and, most importantly, the individual parts of space must persist through time.
Ariew and Garber 117, Loemker §46, W II.5. On Leibniz and physics, see the chapter by Garber in Jolley (1995) and Wilson (1989).
Rafael Ferraro (2007). Einstein's Space-Time: An Introduction to Special and General Relativity. Springer. p. 1. ISBN 978-0-387-69946-2.

See H. G. Alexander, ed., The Leibniz-Clarke Correspondence, Manchester: Manchester University Press, pp. 25–26.

Further reading

David Albert, 1994. Quantum Mechanics and Experience. Harvard Univ. Press.
John D. Barrow and Frank J. Tipler, 1986. The Cosmological Anthropic Principle. Oxford Univ. Press.
Beisbart, C. and S. Hartmann, eds., 2011. "Probabilities in Physics". Oxford Univ. Press.
John S. Bell, 2004 (1987), Speakable and Unspeakable in Quantum Mechanics. Cambridge Univ. Press.
David Bohm, 1980. Wholeness and the Implicate Order. Routledge.
Nick Bostrom, 2002. Anthropic Bias: Observation Selection Effects in Science and Philosophy. Routledge.
Thomas Brody, 1993, Ed. by Luis de la Peña and Peter E. Hodgson The Philosophy Behind Physics Springer ISBN 3-540-55914-0
Harvey Brown, 2005. Physical Relativity. Space-time structure from a dynamical perspective. Oxford Univ. Press.
Butterfield, J., and John Earman, eds., 2007. Philosophy of Physics, Parts A and B. Elsevier.
Craig Callender and Nick Huggett, 2001. Physics Meets Philosophy at the Planck Scale. Cambridge Univ. Press.
David Deutsch, 1997. The Fabric of Reality. London: The Penguin Press.
Bernard d'Espagnat, 1989. Reality and the Physicist. Cambridge Univ. Press. Trans. of Une incertaine réalité; le monde quantique, la connaissance et la durée.
--------, 1995. Veiled Reality. Addison-Wesley.
--------, 2006. On Physics and Philosophy. Princeton Univ. Press.
Roland Omnes, 1994. The Interpretation of Quantum Mechanics. Princeton Univ. Press.
--------, 1999. Quantum Philosophy. Princeton Univ. Press.
Huw Price, 1996. Time's Arrow and Archimedes's Point. Oxford Univ. Press.
Lawrence Sklar, 1992. Philosophy of Physics. Westview Press. ISBN 0-8133-0625-6, ISBN 978-0-8133-0625-4
Victor Stenger, 2000. Timeless Reality. Prometheus Books.
Carl Friedrich von Weizsäcker, 1980. The Unity of Nature. Farrar Straus & Giroux.
Werner Heisenberg, 1971. Physics and Beyond: Encounters and Conversations. Harper & Row (World Perspectives series), 1971.
William Berkson, 1974. Fields of Force. Routledge and Kegan Paul, London. ISBN 0-7100-7626-6
Encyclopædia Britannica, Philosophy of Physics, David Z. Albert

vte

Philosophy
Branches
Schools of thought
Positions

By regionRelated listsMiscellaneous

Portal Portal Category Category Wikipedia book Book

vte

Philosophy of time
Concepts in time

Time A priori and a posteriori A series and B series Action Deterministic system Duration Eternal return Eternity Event Free will Growing block universe Imaginary time Multiple time dimensions Temporal parts


Theories of time

B-theory of time Compatibilism and incompatibilism Determinism Endurantism Eternalism Four-dimensionalism Fatalism Temporal finitism Indeterminism Perdurantism Presentism Static interpretation of time

Related articles

Etiology Metaphysics Post hoc ergo propter hoc Teleology "The Unreality of Time" The Singular Universe and the Reality of Time An Experiment with Time

vte

Philosophy of science
Concepts

Analysis Analytic–synthetic distinction A priori and a posteriori Causality Commensurability Consilience Construct Creative synthesis Demarcation problem Empirical evidence Explanatory power Fact Falsifiability Feminist method Functional contextualism

Ignoramus et ignorabimus Inductive reasoning Intertheoretic reduction Inquiry Nature Objectivity Observation Paradigm Problem of induction Scientific law Scientific method Scientific revolution Scientific theory Testability Theory choice Theory-ladenness Underdetermination Unity of science

Metatheory
of science

Coherentism Confirmation holism Constructive empiricism Constructive realism Constructivist epistemology Contextualism Conventionalism Deductive-nomological model Hypothetico-deductive model Inductionism Epistemological anarchism Evolutionism Fallibilism Foundationalism Instrumentalism Pragmatism Model-dependent realism Naturalism Physicalism Positivism / Reductionism / Determinism Rationalism / Empiricism Received view / Semantic view of theories Scientific realism / Anti-realism Scientific essentialism Scientific formalism Scientific skepticism Scientism Structuralism Uniformitarianism Vitalism

Philosophy of

Physics
thermal and statistical Motion Chemistry Biology Geography Social science Technology
Engineering Artificial intelligence Computer science Information Mind Psychiatry Psychology Perception Space and time

Related topics

Alchemy Criticism of science Descriptive science Epistemology Faith and rationality Hard and soft science History and philosophy of science History of science History of evolutionary thought Logic Metaphysics Normative science Pseudoscience Relationship between religion and science Rhetoric of science Science studies Sociology of scientific knowledge Sociology of scientific ignorance

Philosophers of science by era

Category Socrates.png Philosophy portal Nuvola apps kalzium.svg Science portal

vte

The fundamental interactions of physics
Physical forces

Strong interaction
Fundamental Residual Electroweak interaction
Weak interaction Electromagnetism Gravitation Electric charge

Radiations

Electromagnetic radiation Gravitational radiation

Hypothetical forces

Fifth force Quintessence Weak gravity conjecture

Glossary of physics Particle physics Philosophy of physics Universe Weakless Universe

vte

Branches of physics
Divisions

Theoretical Computational Experimental Applied

Classical

Classical mechanics Acoustics Classical electromagnetism Optics Thermodynamics Statistical mechanics

Modern

Quantum mechanics Special relativity General relativity Particle physics Nuclear physics Quantum chromodynamics Atomic, molecular, and optical physics Condensed matter physics Cosmology Astrophysics

Interdisciplinary

Atmospheric physics Biophysics Chemical physics Engineering physics Geophysics Materials science Mathematical physics

See also

History of physics Nobel Prize in Physics Timeline of physics discoveries Theory of everything

Physics Encyclopedia

World

Index

Hellenica World - Scientific Library

Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License