ART

Quantum metrology is the study of making high-resolution and highly sensitive measurements of physical parameters using quantum theory to describe the physical systems,[1][2][3][4][5][6] particularly exploiting quantum entanglement and quantum squeezing. This field promises to develop measurement techniques that give better precision than the same measurement performed in a classical framework. Together with quantum hypothesis testing[7][8], it represents an important theoretical model at the basis of quantum sensing.[9]

Mathematical foundations of quantum metrology

A basic task of quantum metrology is estimating the parameter \( \theta \) of the unitary dynamics

\( {\displaystyle \varrho (\theta )=\exp(-iH\theta )\varrho _{0},} \)

where \( {\displaystyle \varrho _{0}} \) is the initial state of the system and H is the Hamiltonian of the system. \( \theta \) is estimated based on measurements on \( {\displaystyle \varrho (\theta ).} \)

Typically, the system is composed of many particles, and the Hamiltonian is a sum of single-particle terms

\( {\displaystyle H=\sum _{k}H_{k},} \)

where \( H_{k} \) acts on the kth particle. In this case, there is no interaction between the particles, and we talk about linear interferometers.

The achievable precision is bounded from below by the quantum Cramér-Rao bound as

\( {\displaystyle (\Delta \theta )^{2}\geq {\frac {1}{F_{\rm {Q}}[\varrho ,H]}},} \)

where \( {\displaystyle F_{\rm {Q}}[\varrho ,H]} \) is the quantum Fisher information.[1][10]
Examples

One example of note is the use of the NOON state in a Mach–Zehnder interferometer to perform accurate phase measurements.[11] A similar effect can be produced using less exotic states such as squeezed states. In atomic ensembles, spin squeezed states can be used for phase measurements.
Applications

An important application of particular note is the detection of gravitational radiation with projects such as LIGO. Here high precision distance measurements must be made of two widely separated masses. However, currently the measurements described by quantum metrology are usually not used as they are very difficult to implement and there are many other sources of noise which prohibit the detection of gravitational waves which must be overcome first. Nevertheless, plans may call for the use of quantum metrology in LIGO.[12]
Scaling and the effect of noise

A central question of quantum metrology is how the precision, i.e., the variance of the parameter estimation, scales with the number of particles. Classical interferometers cannot overcome the shot-noise limit

\( {\displaystyle (\Delta \theta )^{2}\geq {\tfrac {1}{N}},} \)

where is N {\displaystyle N} N the number of particles. Quantum metrology can reach the Heisenberg limit given by

\( {\displaystyle (\Delta \theta )^{2}\geq {\tfrac {1}{N^{2}}}.} \)

However, if uncorrelated local noise is present, then for large particle numbers the scaling of the precision returns to shot-noise scaling \( {\displaystyle (\Delta \theta )^{2}\sim {\tfrac {1}{N}}.} \) [13][14]
Relation to quantum information science

There are strong links between quantum metrology and quantum information science. It has been shown that quantum entanglement is needed to outperform classical interferometry in magnetrometry with a fully polarized ensemble of spins.[15] It has been proved that a similar relation is generally valid for any linear interferometer, independent of the details of the scheme.[16] Moreover, higher and higher levels of multipartite entanglement is needed to achieve a better and better accuracy in parameter estimation.[17][18]
References

Braunstein, Samuel L.; Caves, Carlton M. (May 30, 1994). "Statistical distance and the geometry of quantum states". Physical Review Letters. American Physical Society (APS). 72 (22): 3439–3443. Bibcode:1994PhRvL..72.3439B. doi:10.1103/physrevlett.72.3439. ISSN 0031-9007. PMID 10056200.
Paris, Matteo G. A. (November 21, 2011). "Quantum Estimation for Quantum Technology". International Journal of Quantum Information. 07 (supp01): 125–137.arXiv:0804.2981. doi:10.1142/S0219749909004839.
Giovannetti, Vittorio; Lloyd, Seth; Maccone, Lorenzo (March 31, 2011). "Advances in quantum metrology". Nature Photonics. 5 (4): 222–229. arXiv:1102.2318. Bibcode:2011NaPho...5..222G. doi:10.1038/nphoton.2011.35.
Tóth, Géza; Apellaniz, Iagoba (October 24, 2014). "Quantum metrology from a quantum information science perspective". Journal of Physics A: Mathematical and Theoretical. 47 (42): 424006. doi:10.1088/1751-8113/47/42/424006.
Pezzè, Luca; Smerzi, Augusto; Oberthaler, Markus K.; Schmied, Roman; Treutlein, Philipp (September 5, 2018). "Quantum metrology with nonclassical states of atomic ensembles". Reviews of Modern Physics. 90 (3): 035005. arXiv:1609.01609. doi:10.1103/RevModPhys.90.035005.
Braun, Daniel; Adesso, Gerardo; Benatti, Fabio; Floreanini, Roberto; Marzolino, Ugo; Mitchell, Morgan W.; Pirandola, Stefano (September 5, 2018). "Quantum-enhanced measurements without entanglement". Reviews of Modern Physics. 90 (3): 035006.arXiv:1701.05152. doi:10.1103/RevModPhys.90.035006.
Helstrom, C (1976). Quantum detection and estimation theory. Academic Press. ISBN 0123400503.
Holevo, Alexander S (1982). Probabilistic and statistical aspects of quantum theory ([2nd English.] ed.). Scuola Normale Superiore. ISBN 978-88-7642-378-9.
Pirandola, S; Bardhan, B. R.; Gehring, T.; Weedbrook, C.; Lloyd, S. (2018). "Advances in photonic quantum sensing". Nature Photonics. 12 (12): 724–733.arXiv:1811.01969. doi:10.1038/s41566-018-0301-6.
Braunstein, Samuel L.; Caves, Carlton M.; Milburn, G.J. (April 1996). "Generalized Uncertainty Relations: Theory, Examples, and Lorentz Invariance". Annals of Physics. 247 (1): 135–173. doi:10.1006/aphy.1996.0040.
Kok, Pieter; Braunstein, Samuel L; Dowling, Jonathan P (July 28, 2004). "Quantum lithography, entanglement and Heisenberg-limited parameter estimation" (PDF). Journal of Optics B: Quantum and Semiclassical Optics. IOP Publishing. 6 (8): S811–S815. doi:10.1088/1464-4266/6/8/029. ISSN 1464-4266.
Kimble, H. J.; Levin, Yuri; Matsko, Andrey B.; Thorne, Kip S.; Vyatchanin, Sergey P. (December 26, 2001). "Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics" (PDF). Physical Review D. American Physical Society (APS). 65 (2): 022002. arXiv:gr-qc/0008026. Bibcode:2002PhRvD..65b2002K. doi:10.1103/physrevd.65.022002. hdl:1969.1/181491. ISSN 0556-2821.
Demkowicz-Dobrzański, Rafał; Kołodyński, Jan; Guţă, Mădălin (September 18, 2012). "The elusive Heisenberg limit in quantum-enhanced metrology". Nature Communications. 3: 1063. arXiv:1201.3940. Bibcode:2012NatCo...3.1063D. doi:10.1038/ncomms2067. PMC 3658100. PMID 22990859.
Escher, B. M.; Filho, R. L. de Matos; Davidovich, L. (May 2011). "General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology". Nature Physics. 7 (5): 406–411.arXiv:1201.1693. Bibcode:2011NatPh...7..406E. doi:10.1038/nphys1958. ISSN 1745-2481.
Sørensen, Anders S. (2001). "Entanglement and Extreme Spin Squeezing". Physical Review Letters. 86 (20): 4431–4434. arXiv:quant-ph/0011035. Bibcode:2001PhRvL..86.4431S. doi:10.1103/physrevlett.86.4431. PMID 11384252.
Pezzé, Luca (2009). "Entanglement, Nonlinear Dynamics, and the Heisenberg Limit". Physical Review Letters. 102 (10): 100401. arXiv:0711.4840. Bibcode:2009PhRvL.102j0401P. doi:10.1103/physrevlett.102.100401. PMID 19392092.
Hyllus, Philipp (2012). "Fisher information and multiparticle entanglement". Physical Review A. 85 (2): 022321. arXiv:1006.4366. Bibcode:2012PhRvA..85b2321H. doi:10.1103/physreva.85.022321.

Tóth, Géza (2012). "Multipartite entanglement and high-precision metrology". Physical Review A. 85 (2): 022322.arXiv:1006.4368. Bibcode:2012PhRvA..85b2322T. doi:10.1103/physreva.85.022322.

vte

Quantum mechanics
Background

Introduction History
timeline Glossary Classical mechanics Old quantum theory

Fundamentals

Bra–ket notation Casimir effect Coherence Coherent control Complementarity Density matrix Energy level
degenerate levels excited state ground state QED vacuum QCD vacuum Vacuum state Zero-point energy Hamiltonian Heisenberg uncertainty principle Pauli exclusion principle Measurement Observable Operator Probability distribution Quantum Qubit Qutrit Scattering theory Spin Spontaneous parametric down-conversion Symmetry Symmetry breaking
Spontaneous symmetry breaking No-go theorem No-cloning theorem Von Neumann entropy Wave interference Wave function
collapse Universal wavefunction Wave–particle duality
Matter wave Wave propagation Virtual particle

Quantum

quantum coherence annealing decoherence entanglement fluctuation foam levitation noise nonlocality number realm state superposition system tunnelling Quantum vacuum state

Mathematics
Equations

Dirac Klein–Gordon Pauli Rydberg Schrödinger

Formulations

Heisenberg Interaction Matrix mechanics Path integral formulation Phase space Schrödinger

Other

Quantum
algebra calculus
differential stochastic geometry group Q-analog
List

Interpretations

Bayesian Consistent histories Cosmological Copenhagen de Broglie–Bohm Ensemble Hidden variables Many worlds Objective collapse Quantum logic Relational Stochastic Transactional

Experiments

Afshar Bell's inequality Cold Atom Laboratory Davisson–Germer Delayed-choice quantum eraser Double-slit Elitzur–Vaidman Franck–Hertz experiment Leggett–Garg inequality Mach-Zehnder inter. Popper Quantum eraser Quantum suicide and immortality Schrödinger's cat Stern–Gerlach Wheeler's delayed choice

Science

Measurement problem QBism

Quantum

biology chemistry chaos cognition complexity theory computing
Timeline cosmology dynamics economics finance foundations game theory information nanoscience metrology mind optics probability social science spacetime

Technologies

Quantum technology
links Matrix isolation Phase qubit Quantum dot
cellular automaton display laser single-photon source solar cell Quantum well
laser

Extensions

Dirac sea Fractional quantum mechanics Quantum electrodynamics
links Quantum geometry Quantum field theory
links Quantum gravity
links Quantum information science
links Quantum statistical mechanics Relativistic quantum mechanics De Broglie–Bohm theory Stochastic electrodynamics

Related

Quantum mechanics of time travel Textbooks

vte

Emerging technologies
Fields
Quantum

algorithms amplifier bus cellular automata channel circuit complexity theory computing clock cryptography
post-quantum dynamics electronics error correction finite automata image processing imaging information key distribution logic logic gates machine machine learning metamaterial network neural network optics programming sensing simulator teleportation

Other

Anti-gravity Acoustic levitation Cloak of invisibility Digital scent technology Force field
Plasma window Immersive virtual reality Magnetic refrigeration Phased-array optics Thermoacoustic heat engine

Physics Encyclopedia

World

Index

Hellenica World - Scientific Library

Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License