Loading Web-Font TeX/Main/Regular

ART

In quantum mechanics, for systems where the total number of particles may not be preserved, the number operator is the observable that counts the number of particles.

The number operator acts on Fock space. Let

|\Psi\rangle_\nu=|\phi_1,\phi_2,\cdots,\phi_n\rangle_\nu

be a Fock state, composed of single-particle states |\phi _{i}\rangle drawn from a basis of the underlying Hilbert space of the Fock space. Given the corresponding creation and annihilation operators a^{\dagger}(\phi_i) and a(\phi_i)\, we define the number operator by

\hat{N_i} \ \stackrel{\mathrm{def}}{=}\ a^{\dagger}(\phi_i)a(\phi_i)

and we have

\hat{N_i}|\Psi\rangle_\nu=N_i|\Psi\rangle_\nu

where N_{i} is the number of particles in state |\phi _{i}\rangle . The above equality can be proven by noting that

\begin{matrix} a(\phi_i) |\phi_1,\phi_2,\cdots,\phi_{i-1},\phi_i,\phi_{i+1},\cdots,\phi_n\rangle_\nu &=& \sqrt{N_i} |\phi_1,\phi_2,\cdots,\phi_{i-1},\phi_{i+1},\cdots,\phi_n\rangle_\nu \\ a^{\dagger}(\phi_i) |\phi_1,\phi_2,\cdots,\phi_{i-1},\phi_{i+1},\cdots,\phi_n\rangle_\nu &=& \sqrt{N_i} |\phi_1,\phi_2,\cdots,\phi_{i-1},\phi_{i},\phi_{i+1},\cdots,\phi_n\rangle_\nu \end{matrix}

then

\begin{matrix} \hat{N_i}|\Psi\rangle_\nu = a^{\dagger}(\phi_i)a(\phi_i) |\phi_1,\phi_2,\cdots,\phi_{i-1},\phi_i,\phi_{i+1},\cdots,\phi_n\rangle_\nu &=& \sqrt{N_i} a^{\dagger}(\phi_i) |\phi_1,\phi_2,\cdots,\phi_{i-1},\phi_{i+1},\cdots,\phi_n\rangle_\nu \\ &=& \sqrt{N_i} \sqrt{N_i} |\phi_1,\phi_2,\cdots,\phi_{i-1},\phi_{i},\phi_{i+1},\cdots,\phi_n\rangle_\nu \\&=& N_i|\Psi\rangle_\nu\\ \end{matrix}

See also

Harmonic oscillator
Quantum harmonic oscillator
Second quantization
Quantum field theory
Thermodynamics
Fermion number operator

References

Bruus, Henrik; Flensberg, Karsten. (2004). Many-body Quantum Theory in Condensed Matter Physics: An Introduction. Oxford University Press. ISBN 0-19-856633-6.
Second quantization notes by Fradkin

Physics Encyclopedia

World

Index

Hellenica World - Scientific Library

Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License