This page lists examples of magnetic induction B in teslas and gauss produced by various sources, grouped by orders of magnitude.
Note:
Traditionally, magnetizing field H, is measured in amperes per meter.
Magnetic induction B (also known as magnetic flux density) has the SI unit tesla [T or Wb/m2].[1]
One tesla is equal to 104 gauss.
Magnetic field drops off as the cube of the distance from a dipole source.
Orders of Magnitude
These examples attempt to make the measuring point clear, usually the surface of the item mentioned.
List of orders of magnitude for magnetic fields
Factor (tesla) | SI prefix | Value (SI units) | Value (CGS units) | Item |
---|---|---|---|---|
10−18 | attotesla | 5 aT | 50 fG | SQUID magnetometers on Gravity Probe B gyroscopes measure fields at this level over several days of averaged measurements[2] |
10−15 | femtotesla | 2 fT | 20 pG | SQUID magnetometers on Gravity Probe B gyros measure fields at this level in about one second |
10−12 | picotesla | 100 fT to 1 pT | 1 nG to 10 nG | Human brain magnetic field |
10−11 | 10 pT | 100 nG | In September 2006, NASA found "potholes" in the magnetic field in the heliosheath around our solar system that are 10 picoteslas as reported by Voyager 1[3] | |
10−9 | nanotesla | 100 pT to 10 nT | 1 μG to 100 μG | Magnetic field strength in the heliosphere |
10−7 | 60 nT to 700 nT | 600 μG to 7 mG | Magnetic field produced by a toaster, in use, at a distance of 30 cm (1 ft)[4] | |
100 nT to 500 nT | 1 mG to 5 mG | Magnetic field produced by residential electric distribution lines (34.5 kV) at a distance of 30 cm (1 ft)[4][5] | ||
10−6 | microtesla | 1.3 μT to 2.7 μT | 13 mG to 27 mG | Magnetic field produced by high power (500 kV) transmission lines at a distance of 30 m (100 ft)[5] |
4 μT to 8 μT | 40 mG to 80 mG | Magnetic field produced by a microwave oven, in use, at a distance of 30 cm (1 ft)[4] | ||
10−5 | 24 μT | 240 mG | Strength of magnetic tape near tape head | |
31 μT | 310 mG | Strength of Earth's magnetic field at 0° latitude (on the equator) | ||
58 μT | 580 mG | Strength of Earth's magnetic field at 50° latitude | ||
10−4 | 500 μT | 5 G | The suggested exposure limit for cardiac pacemakers by American Conference of Governmental Industrial Hygienists (ACGIH) | |
10−3 | millitesla | 5 mT | 50 G | The strength of a typical refrigerator magnet[6] |
10−2 | centitesla | |||
10−1 | decitesla | 150 mT | 1.5 kG | The magnetic field strength of a sunspot |
100 | tesla | 1 T to 2.4 T | 10 kG to 24 kG | Coil gap of a typical loudspeaker magnet.[7] |
1 T to 2 T | 10 kG to 20 kG | Inside the core of a modern 50/60 Hz power transformer[8][9] | ||
1.25 T | 12.5 kG | Strength of a modern neodymium–iron–boron (Nd2Fe14B) rare earth magnet. A coin-sized neodymium magnet can lift more than 9 kg, erase credit cards.[10] | ||
1.5 T to 7 T | 15 kG to 30 kG | Strength of medical magnetic resonance imaging systems in practice, experimentally up to 11.7 T[11][12][13] | ||
9.4 T | 94 kG | Modern high resolution research magnetic resonance imaging system; field strength of a 400 MHz NMR spectrometer | ||
101 | decatesla | 11.7 T | 117 kG | Field strength of a 500 MHz NMR spectrometer |
16 T | 160 kG | Strength used to levitate a frog[14] | ||
23.5 T | 235 kG | Field strength of a 1 GHz NMR spectrometer[15] | ||
38 T | 380 kG | Strongest continuous magnetic field produced by non-superconductive resistive magnet.[16] | ||
45 T | 450 kG | Strongest continuous magnetic field yet produced in a laboratory (Florida State University's National High Magnetic Field Laboratory in Tallahassee, USA).[17] | ||
102 | hectotesla | 100 T | 1 MG | Strongest pulsed non-destructive magnetic field produced in a laboratory, Pulsed Field Facility at National High Magnetic Field Laboratory's, Los Alamos National Laboratory, Los Alamos, NM, USA).[18] |
103 | kilotesla | 1.2 kT | 12 MG | Record for indoor pulsed magnetic field, (University of Tokyo, 2018) [19] |
2.8 kT | 28 MG | Record for human produced, pulsed magnetic field, (VNIIEF, 2001)[20] | ||
104 | 35 kT | 350 MG | Magnetic field felt by valence electrons in a Xenon atom due to the spin–orbit effect.[21] | |
106 | megatesla | 1 MT to 100 MT | 10 GG to 1 TG | Strength of a non-magnetar neutron star.[22] |
108 – 1011 | gigatesla | 100 MT to 100 GT | 1 TG to 1 PG | Strength of a magnetar.[22] |
1014 | teratesla | 100 TT | 1 EG | Strength of magnetic fields inside heavy ion collisions at RHIC.[23][24] |
References
"Bureau International des Poids et Mesures, The International System of Units (SI), 8th edition 2006" (PDF). bipm.org. 2012-10-01. Retrieved 2013-05-26.
Range, Shannon K'doah. Gravity Probe B: Examining Einstein's Spacetime with Gyroscopes. National Aeronautics and Space Administration. October 2004.
"Surprises from the Edge of the Solar System". NASA. 2006-09-21. Archived from the original on 2008-09-29. Retrieved 2017-07-12.
"Magnetic Field Levels Around Homes" (PDF). UC San Diego Dept. of Environment, Health & Safety (EH&S). p. 2. Retrieved 2017-03-07.
"EMF in Your Environment: Magnetic Field Measurements of Everyday Electrical Devices". United States Environmental Protection Agency. 1992. pp. 23–24. Retrieved 2017-03-07.
"Information on MRI Technique". Nevus Network. Retrieved 2014-01-28.
Elliot, Rod. "Power Handling Vs. Efficiency". Retrieved 2008-02-17.
"Inductors and transformers" (PDF). eece.ksu.edu. 2003-08-12. Archived from the original (PDF) on September 8, 2008. Retrieved 2013-05-26. "A modern well-designed 60 Hz power transformer will probably have a magnetic flux density between 1 and 2 T inside the core."
"Trafo-Bestimmung 3von3". radiomuseum.org. 2009-07-11. Retrieved 2013-06-01.
"The Tesla Radio Conspiracy". teslaradioconspiracy.blogspot.com.
Savage, Niel (2013-10-23). "The World's Most Powerful MRI Takes Shape".
Smith, Hans-Jørgen. "Magnetic resonance imaging". Medcyclopaedia Textbook of Radiology. GE Healthcare. Archived from the original on 2012-02-07. Retrieved 2007-03-26.
Orenstein, Beth W. (2006-02-16). "Ultra High-Field MRI — The Pull of Big Magnets". Radiology Today. 7 (3). p. 10. Archived from the original on March 15, 2008. Retrieved 2008-07-10.
"Frog defies gravity". New Scientist. No. 2077. 12 April 1997.
"23.5 Tesla Standard-Bore, Persistent Superconducting Magnet". Archived from the original on 2013-06-28. Retrieved 2013-05-08.
ingevoerd, Geen OWMS velden. "HFML sets world record with a new 38 tesla magnet". Radboud Universiteit.
"World's Most Powerful Magnet Tested Ushers in New Era for Steady High Field Research". National High Magnetic Field Laboratory.
"Pulsed Field Facility - MagLab". Pulsed Field Facility.
Nakamura, D.; Ikeda, A.; Sawabe, H.; Matsuda, Y. H.; Takeyama, S. (2018). "Record indoor magnetic field of 1200 T generated by electromagnetic flux-compression". Review of Scientific Instruments. 89 (9): 095106. Bibcode:2018RScI...89i5106N. doi:10.1063/1.5044557. PMID 30278742.
Bykov, A.I.; Dolotenko, M.I.; Kolokolchikov, N.P.; Selemir, V.D.; Tatsenko, O.M. (2001). "VNIIEF achievements on ultra-high magnetic fields generation". Physica B: Condensed Matter. 294–295: 574–578. Bibcode:2001PhyB..294..574B. doi:10.1016/S0921-4526(00)00723-7.
Herman, Frank (15 December 1963). "Relativistic Corrections to the Band Structure of Tetrahedrally Bonded Semiconductors". Physical Review Letters. 11 (541): 541–545. doi:10.1103/PhysRevLett.11.541.
Kouveliotou, Chryssa; Duncan, Robert; Thompson, Christopher (February 2003). "Magnetars". Sci. Am. 288 (288N2): 34–41. Bibcode:2003SciAm.288b..34K. doi:10.1038/scientificamerican0203-34. PMID 12561456. Retrieved 7 January 2019.
Tuchin, Kirill (2013). "Particle production in strong electromagnetic fields in relativistic heavy-ion collisions". Adv. High Energy Phys. 2013: 490495. arXiv:1301.0099. doi:10.1155/2013/490495. S2CID 4877952.
Bzdak, Adam; Skokov, Vladimir (29 March 2012). "Event-by-event fluctuations of magnetic and electric fields in heavy ion collisions". Physics Letters B. 710 (1): 171–174. arXiv:1111.1949. Bibcode:2012PhLB..710..171B. doi:10.1016/j.physletb.2012.02.065. S2CID 118462584.
vte
Orders of magnitude
Quantity
Acceleration Angular momentum Area Bit rate Charge Computing Currency Current Data Density Energy / Energy density Entropy Force Frequency Illuminance Length Luminance Magnetic field Mass Molarity Numbers Power Pressure Probability Radiation Sound pressure Specific heat capacity Speed Temperature Time Voltage
See also
Back-of-the-envelope calculation Fermi problem Powers of 10 and decades
10th 100th 1000000th Billionth Trillionth Metric (SI) prefix Macroscopic scale Microscopic scale Quantum realm
Related
Astronomical system of units Earth's location in the Universe Cosmic View (1957 book) To the Moon and Beyond (1964 film) Cosmic Zoom (1968 film) Powers of Ten (1968 and 1977 films) Cosmic Voyage (1996 documentary) Cosmic Eye (2012)
Hellenica World - Scientific Library
Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License