An optical lattice is formed by the interference of counter-propagating laser beams, creating a spatially periodic polarization pattern. The resulting periodic potential may trap neutral atoms via the Stark shift.[1] Atoms are cooled and congregate in the locations of potential minima. The resulting arrangement of trapped atoms resembles a crystal lattice[2] and can be used for quantum simulation.
Atoms trapped in the optical lattice may move due to quantum tunneling, even if the potential well depth of the lattice points exceeds the kinetic energy of the atoms, which is similar to the electrons in a conductor.[3] However, a superfluid–Mott insulator transition[4] may occur, if the interaction energy between the atoms becomes larger than the hopping energy when the well depth is very large. In the Mott insulator phase, atoms will be trapped in the potential minima and cannot move freely, which is similar to the electrons in an insulator. In the case of Fermionic atoms, if the well depth is further increased the atoms are predicted to form an antiferromagnetic, i.e. Néel state at sufficiently low temperatures.[5]
Parameters
There are two important parameters of an optical lattice: the well depth and the periodicity. The well depth of the optical lattice can be tuned in real time by changing the power of the laser, which is normally controlled by an AOM (acousto-optic modulator). The periodicity of the optical lattice can be tuned by changing the wavelength of the laser or by changing the relative angle between the two laser beams. The real-time control of the periodicity of the lattice is still a challenging task. Because the wavelength of the laser cannot be varied over a large range in real time, the periodicity of the lattice is normally controlled by the relative angle between the laser beams.[6] However, it is difficult to keep the lattice stable while changing the relative angles, since the interference is sensitive to the relative phase between the laser beams. Continuous control of the periodicity of a one-dimensional optical lattice while maintaining trapped atoms in-situ was first demonstrated in 2005 using a single-axis servo-controlled galvanometer.[7] This "accordion lattice" was able to vary the lattice periodicity from 1.30 to 9.3 μm. More recently, a different method of real-time control of the lattice periodicity was demonstrated,[8] in which the center fringe moved less than 2.7 μm while the lattice periodicity was changed from 0.96 to 11.2 μm. Keeping atoms (or other particles) trapped while changing the lattice periodicity remains to be tested more thoroughly experimentally. Such accordion lattices are useful for controlling ultracold atoms in optical lattices, where small spacing is essential for quantum tunneling, and large spacing enables single-site manipulation and spatially resolved detection. Site-resolved detection of the occupancy of lattice sites of both bosons and fermions within a high tunneling regime is regularly performed in quantum gas microscopes.[9][10]
Uses
Besides trapping cold atoms, optical lattices have been widely used in creating gratings and photonic crystals. They are also useful for sorting microscopic particles,[11] and may be useful for assembling cell arrays.
Atoms in an optical lattice provide an ideal quantum system where all parameters can be controlled. Thus they can be used to study effects that are difficult to observe in real crystals. They are also promising candidates for quantum information processing.[12][13] The best atomic clocks in the world use atoms trapped in optical lattices, to obtain narrow spectral lines that are unaffected by the Doppler effect and recoil.[14] [15]
See also
Bose–Hubbard model
Ultracold atom
List of laser articles
Electromagnetically induced grating
References
R. Grimm, M. Weidemuller, Y.B. Ovchinnikov (Feb 2000). "Optical dipole traps for neutral atoms." Adv. in Atom. Mol. & Opt. Phys. 42 : 95-170. arXiv.org/abs/physics/9902072. doi.org/10.1016/S1049-250X(08)60186-X.
Bloch, Immanuel (October 2005). "Ultracold quantum gases in optical lattices". Nature Physics. 1 (1): 23–30. Bibcode:2005NatPh...1...23B. doi:10.1038/nphys138.
Gebhard, Florian (1997). The Mott metal-insulator transition models and methods. Berlin [etc.]: Springer. ISBN 978-3-540-61481-4.
Greiner, Markus; Mandel, Olaf; Esslinger, Tilman; Hänsch, Theodor W.; Bloch, Immanuel (January 3, 2002). "Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms". Nature. 415 (6867): 39–44. Bibcode:2002Natur.415...39G. doi:10.1038/415039a. PMID 11780110.
Koetsier, Arnaud; Duine, R. A.; Bloch, Immanuel; Stoof, H. T. C. (2008). "Achieving the Néel state in an optical lattice". Physical Review A. 77 (2): 023623. arXiv:0711.3425. Bibcode:2008PhRvA..77b3623K. doi:10.1103/PhysRevA.77.023623.
Fallani, Leonardo; Fort, Chiara; Lye, Jessica; Inguscio, Massimo (May 2005). "Bose-Einstein condensate in an optical lattice with tunable spacing: transport and static properties". Optics Express. 13 (11): 4303–4313. arXiv:cond-mat/0505029. Bibcode:2005OExpr..13.4303F. doi:10.1364/OPEX.13.004303. PMID 19495345.
Huckans, J. H. (December 2006). "Optical Lattices and Quantum Degenerate Rb-87 in Reduced Dimensions". University of Maryland Doctoral Dissertation.
Li, T. C.; Kelkar,H.; Medellin, D.; Raizen, M. G. (April 3, 2008). "Real-time control of the periodicity of a standing wave: an optical accordion". Optics Express. 16 (8): 5465–5470. arXiv:0803.2733. Bibcode:2008OExpr..16.5465L. doi:10.1364/OE.16.005465. PMID 18542649.
Bakr, Waseem S.; Gillen, Jonathon I.; Peng, Amy; Fölling, Simon; Greiner, Markus (2009-11-05). "A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice". Nature. 462 (7269): 74–77. arXiv:0908.0174. Bibcode:2009Natur.462...74B. doi:10.1038/nature08482. ISSN 0028-0836. PMID 19890326.
Haller, Elmar; Hudson, James; Kelly, Andrew; Cotta, Dylan A.; Peaudecerf, Bruno; Bruce, Graham D.; Kuhr, Stefan (2015-09-01). "Single-atom imaging of fermions in a quantum-gas microscope". Nature Physics. 11 (9): 738–742. arXiv:1503.02005. Bibcode:2015NatPh..11..738H. doi:10.1038/nphys3403. hdl:10023/8011. ISSN 1745-2473.
MacDonald, M. P.; Spalding, G. C.; Dholakia, K. (November 27, 2003). "Microfluidic sorting in an optical lattice". Nature. 426 (6965): 421–424. Bibcode:2003Natur.426..421M. doi:10.1038/nature02144. PMID 14647376.
Brennen, Gavin K.; Caves, Carlton; Jessen, Poul S.; Deutsch, Ivan H. (1999). "Quantum logic gates in optical lattices". Physical Review Letters. 82 (5): 1060–1063. arXiv:quant-ph/9806021. Bibcode:1999PhRvL..82.1060B. doi:10.1103/PhysRevLett.82.1060.
Yang, Bing; Sun, Hui; Hunag, Chun-Jiong; Wang, Han-Yi; Deng, Youjin; Dai, Han-Ning; Yuan, Zhen-Sheng; Pan, Jian-Wei (2020). "Cooling and entangling ultracold atoms in optical lattices". Science. 369 (6503): 550–553. arXiv:1901.01146. Bibcode:2020Sci...369..550Y. doi:10.1126/science.aaz6801.
Derevianko, Andrei; Katori, Hidetoshi (3 May 2011). "Colloquium : Physics of optical lattice clocks". Reviews of Modern Physics. 83 (2): 331–347. arXiv:1011.4622. Bibcode:2011RvMP...83..331D. doi:10.1103/RevModPhys.83.331.
"Ye lab". Ye lab.
External links
More about optical lattices
Introduction to optical lattices
Optical lattice on arxiv.org
vte
Quantum information science
General
DiVincenzo's criteria Quantum computing
Timeline Cloud-based Quantum information Quantum programming Qubit
physical vs. logical Quantum processors
Theorems
Bell's Gleason's Gottesman–Knill Holevo's Margolus–Levitin No-broadcast No-cloning No-communication No-deleting No-hiding No-teleportation PBR Quantum threshold
Quantum
communication
Classical capacity
entanglement-assisted Quantum capacity Entanglement distillation LOCC Quantum channel
Quantum network Quantum cryptography
Quantum key distribution BB84 SARG04 Three-stage quantum cryptography protocol Quantum teleportation Superdense coding
Quantum algorithms
Deutsch–Jozsa Grover's Quantum counting Quantum phase estimation Shor's Amplitude amplification linear systems of equations Quantum annealing Quantum Fourier transform Simon's problem Universal quantum simulator
Quantum
complexity theory
BQP EQP QIP QMA PostBQP
Quantum
computing models
Adiabatic quantum computation One-way quantum computer
cluster state Quantum circuit
Quantum logic gate Quantum Turing machine Topological quantum computer
Quantum
error correction
Codes
CSS Quantum convolutional stabilizer Shor Steane Toric Entanglement-Assisted Quantum Error Correction
Physical
implementations
Quantum optics
Boson sampling Cavity QED Circuit QED Linear optical quantum computing KLM protocol
Ultracold atoms
Optical lattice Trapped ion quantum computer
Spin-based
Kane QC Loss–DiVincenzo QC Nitrogen-vacancy center Nuclear magnetic resonance QC
Superconducting
quantum computing
Charge qubit Flux qubit Phase qubit Transmon
Software
IBM Q Experience libquantum OpenQASM Q# Qiskit
Hellenica World - Scientific Library
Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License