Magnetism is a class of physical phenomena that are mediated by magnetic fields. Electric currents and the magnetic moments of elementary particles give rise to a magnetic field, which acts on other currents and magnetic moments. Magnetism is one aspect of the combined phenomenon of electromagnetism. The most familiar effects occur in ferromagnetic materials, which are strongly attracted by magnetic fields and can be magnetized to become permanent magnets, producing magnetic fields themselves. Demagnetizing a magnet is also possible. Only a few substances are ferromagnetic; the most common ones are iron, cobalt and nickel and their alloys. The prefix ferro- refers to iron, because permanent magnetism was first observed in lodestone, a form of natural iron ore called magnetite, Fe3O4.
All substances exhibit some type of magnetism. Magnetic materials are classified according to their bulk susceptibility[1]. Ferromagnetism is responsible for most of the effects of magnetism encountered in everyday life, but there are actually several types of magnetism. Paramagnetic substances, such as aluminum and oxygen, are weakly attracted to an applied magnetic field; diamagnetic substances, such as copper and carbon, are weakly repelled; while antiferromagnetic materials, such as chromium and spin glasses, have a more complex relationship with a magnetic field. The force of a magnet on paramagnetic, diamagnetic, and antiferromagnetic materials is usually too weak to be felt and can be detected only by laboratory instruments, so in everyday life, these substances are often described as non-magnetic.
The magnetic state (or magnetic phase) of a material depends on temperature, pressure, and the applied magnetic field. A material may exhibit more than one form of magnetism as these variables change.
The strength of a magnetic field almost always decreases with distance, though the exact mathematical relationship between strength and distance varies. Different configurations of magnetic moments and electric currents can result in complicated magnetic fields.
Only magnetic dipoles have been observed, although some theories predict the existence of magnetic monopoles.
History
Main article: History of electromagnetism
Lodestone, a natural magnet, attracting iron nails. Ancient humans discovered the property of magnetism from lodestone.
An illustration from Gilbert's 1600 De Magnete showing one of the earliest methods of making a magnet. A blacksmith holds a piece of red-hot iron in a north-south direction and hammers it as it cools. The magnetic field of the Earth aligns the domains, leaving the iron a weak magnet.
Drawing of a medical treatment using magnetic brushes. Charles Jacque 1843, France.
Magnetism was first discovered in the ancient world, when people noticed that lodestones, naturally magnetized pieces of the mineral magnetite, could attract iron.[2] The word magnet comes from the Greek term μαγνῆτις λίθος magnētis lithos,[3] "the Magnesian stone,[4] lodestone." In ancient Greece, Aristotle attributed the first of what could be called a scientific discussion of magnetism to the philosopher Thales of Miletus, who lived from about 625 BC to about 545 BC.[5] The ancient Indian medical text Sushruta Samhita describes using magnetite to remove arrows embedded in a person's body.[6]
In ancient China, the earliest literary reference to magnetism lies in a 4th-century BC book named after its author, The Sage of Ghost Valley.[7] The 2nd-century BC annals, Lüshi Chunqiu, also notes: "The lodestone makes iron approach, or it attracts it."[8] The earliest mention of the attraction of a needle is in a 1st-century work Lunheng (Balanced Inquiries): "A lodestone attracts a needle."[9] The 11th-century Chinese scientist Shen Kuo was the first person to write—in the Dream Pool Essays—of the magnetic needle compass and that it improved the accuracy of navigation by employing the astronomical concept of true north. By the 12th century, the Chinese were known to use the lodestone compass for navigation. They sculpted a directional spoon from lodestone in such a way that the handle of the spoon always pointed south.
Alexander Neckam, by 1187, was the first in Europe to describe the compass and its use for navigation. In 1269, Peter Peregrinus de Maricourt wrote the Epistola de magnete, the first extant treatise describing the properties of magnets. In 1282, the properties of magnets and the dry compasses were discussed by Al-Ashraf, a Yemeni physicist, astronomer, and geographer.[10]
Leonardo Garzoni's only extant work, the Due trattati sopra la natura, e le qualità della calamita, is the first known example of a modern treatment of magnetic phenomena. Written in years near 1580 and never published, the treatise had a wide diffusion. In particular, Garzoni is referred to as an expert in magnetism by Niccolò Cabeo, whose Philosophia Magnetica (1629) is just a re-adjustment of Garzoni's work. Garzoni's treatise was known also to Giovanni Battista Della Porta and William Gilbert.
In 1600, William Gilbert published his De Magnete, Magneticisque Corporibus, et de Magno Magnete Tellure (On the Magnet and Magnetic Bodies, and on the Great Magnet the Earth). In this work he describes many of his experiments with his model earth called the terrella. From his experiments, he concluded that the Earth was itself magnetic and that this was the reason compasses pointed north (previously, some believed that it was the pole star (Polaris) or a large magnetic island on the north pole that attracted the compass).
An understanding of the relationship between electricity and magnetism began in 1819 with work by Hans Christian Ørsted, a professor at the University of Copenhagen, who discovered by the accidental twitching of a compass needle near a wire that an electric current could create a magnetic field. This landmark experiment is known as Ørsted's Experiment. Several other experiments followed, with André-Marie Ampère, who in 1820 discovered that the magnetic field circulating in a closed-path was related to the current flowing through a surface enclosed by the path; Carl Friedrich Gauss; Jean-Baptiste Biot and Félix Savart, both of whom in 1820 came up with the Biot–Savart law giving an equation for the magnetic field from a current-carrying wire; Michael Faraday, who in 1831 found that a time-varying magnetic flux through a loop of wire induced a voltage, and others finding further links between magnetism and electricity. James Clerk Maxwell synthesized and expanded these insights into Maxwell's equations, unifying electricity, magnetism, and optics into the field of electromagnetism. In 1905, Albert Einstein used these laws in motivating his theory of special relativity,[11] requiring that the laws held true in all inertial reference frames.
Electromagnetism has continued to develop into the 21st century, being incorporated into the more fundamental theories of gauge theory, quantum electrodynamics, electroweak theory, and finally the standard model.
Sources
See also: Magnetic moment
Magnetism, at its root, arises from two sources:
Electric current.
Spin magnetic moments of elementary particles.
The magnetic properties of materials are mainly due to the magnetic moments of their atoms' orbiting electrons. The magnetic moments of the nuclei of atoms are typically thousands of times smaller than the electrons' magnetic moments, so they are negligible in the context of the magnetization of materials. Nuclear magnetic moments are nevertheless very important in other contexts, particularly in nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI).
Ordinarily, the enormous number of electrons in a material are arranged such that their magnetic moments (both orbital and intrinsic) cancel out. This is due, to some extent, to electrons combining into pairs with opposite intrinsic magnetic moments as a result of the Pauli exclusion principle (see electron configuration), and combining into filled subshells with zero net orbital motion. In both cases, the electrons preferentially adopt arrangements in which the magnetic moment of each electron is canceled by the opposite moment of another electron. Moreover, even when the electron configuration is such that there are unpaired electrons and/or non-filled subshells, it is often the case that the various electrons in the solid will contribute magnetic moments that point in different, random directions so that the material will not be magnetic.
Sometimes, either spontaneously, or owing to an applied external magnetic field—each of the electron magnetic moments will be, on average, lined up. A suitable material can then produce a strong net magnetic field.
The magnetic behavior of a material depends on its structure, particularly its electron configuration, for the reasons mentioned above, and also on the temperature. At high temperatures, random thermal motion makes it more difficult for the electrons to maintain alignment.
Types of magnetism
Hierarchy of types of magnetism.[12]
Diamagnetism
Main article: Diamagnetism
Diamagnetism appears in all materials and is the tendency of a material to oppose an applied magnetic field, and therefore, to be repelled by a magnetic field. However, in a material with paramagnetic properties (that is, with a tendency to enhance an external magnetic field), the paramagnetic behavior dominates.[13] Thus, despite its universal occurrence, diamagnetic behavior is observed only in a purely diamagnetic material. In a diamagnetic material, there are no unpaired electrons, so the intrinsic electron magnetic moments cannot produce any bulk effect. In these cases, the magnetization arises from the electrons' orbital motions, which can be understood classically as follows:
When a material is put in a magnetic field, the electrons circling the nucleus will experience, in addition to their Coulomb attraction to the nucleus, a Lorentz force from the magnetic field. Depending on which direction the electron is orbiting, this force may increase the centripetal force on the electrons, pulling them in towards the nucleus, or it may decrease the force, pulling them away from the nucleus. This effect systematically increases the orbital magnetic moments that were aligned opposite the field and decreases the ones aligned parallel to the field (in accordance with Lenz's law). This results in a small bulk magnetic moment, with an opposite direction to the applied field.
This description is meant only as a heuristic; the Bohr-van Leeuwen theorem shows that diamagnetism is impossible according to classical physics, and that a proper understanding requires a quantum-mechanical description.
All materials undergo this orbital response. However, in paramagnetic and ferromagnetic substances, the diamagnetic effect is overwhelmed by the much stronger effects caused by the unpaired electrons.
Paramagnetism
Main article: Paramagnetism
In a paramagnetic material there are unpaired electrons; i.e., atomic or molecular orbitals with exactly one electron in them. While paired electrons are required by the Pauli exclusion principle to have their intrinsic ('spin') magnetic moments pointing in opposite directions, causing their magnetic fields to cancel out, an unpaired electron is free to align its magnetic moment in any direction. When an external magnetic field is applied, these magnetic moments will tend to align themselves in the same direction as the applied field, thus reinforcing it.
Ferromagnetism
Tip of permanent magnet with coins demonstrating ferromagnetism
Main article: Ferromagnetism
A ferromagnet, like a paramagnetic substance, has unpaired electrons. However, in addition to the electrons' intrinsic magnetic moment's tendency to be parallel to an applied field, there is also in these materials a tendency for these magnetic moments to orient parallel to each other to maintain a lowered-energy state. Thus, even in the absence of an applied field, the magnetic moments of the electrons in the material spontaneously line up parallel to one another.
Every ferromagnetic substance has its own individual temperature, called the Curie temperature, or Curie point, above which it loses its ferromagnetic properties. This is because the thermal tendency to disorder overwhelms the energy-lowering due to ferromagnetic order.
Ferromagnetism only occurs in a few substances; common ones are iron, nickel, cobalt, their alloys, and some alloys of rare-earth metals.
Magnetic domains
Main article: Magnetic domains
Magnetic domains boundaries (white lines) in ferromagnetic material (black rectangle)
Effect of a magnet on the domains
The magnetic moments of atoms in a ferromagnetic material cause them to behave something like tiny permanent magnets. They stick together and align themselves into small regions of more or less uniform alignment called magnetic domains or Weiss domains. Magnetic domains can be observed with a magnetic force microscope to reveal magnetic domain boundaries that resemble white lines in the sketch. There are many scientific experiments that can physically show magnetic fields.
When a domain contains too many molecules, it becomes unstable and divides into two domains aligned in opposite directions, so that they stick together more stably, as shown at the right.
When exposed to a magnetic field, the domain boundaries move, so that the domains aligned with the magnetic field grow and dominate the structure (dotted yellow area), as shown at the left. When the magnetizing field is removed, the domains may not return to an unmagnetized state. This results in the ferromagnetic material's being magnetized, forming a permanent magnet.
When magnetized strongly enough that the prevailing domain overruns all others to result in only one single domain, the material is magnetically saturated. When a magnetized ferromagnetic material is heated to the Curie point temperature, the molecules are agitated to the point that the magnetic domains lose the organization, and the magnetic properties they cause cease. When the material is cooled, this domain alignment structure spontaneously returns, in a manner roughly analogous to how a liquid can freeze into a crystalline solid.
Antiferromagnetism
Antiferromagnetic ordering
Main article: Antiferromagnetism
In an antiferromagnet, unlike a ferromagnet, there is a tendency for the intrinsic magnetic moments of neighboring valence electrons to point in opposite directions. When all atoms are arranged in a substance so that each neighbor is anti-parallel, the substance is antiferromagnetic. Antiferromagnets have a zero net magnetic moment, meaning that no field is produced by them. Antiferromagnets are less common compared to the other types of behaviors and are mostly observed at low temperatures. In varying temperatures, antiferromagnets can be seen to exhibit diamagnetic and ferromagnetic properties.
In some materials, neighboring electrons prefer to point in opposite directions, but there is no geometrical arrangement in which each pair of neighbors is anti-aligned. This is called a spin glass and is an example of geometrical frustration.
Ferrimagnetism
Ferrimagnetic ordering
Main article: Ferrimagnetism
Like ferromagnetism, ferrimagnets retain their magnetization in the absence of a field. However, like antiferromagnets, neighboring pairs of electron spins tend to point in opposite directions. These two properties are not contradictory, because in the optimal geometrical arrangement, there is more magnetic moment from the sublattice of electrons that point in one direction, than from the sublattice that points in the opposite direction.
Most ferrites are ferrimagnetic. The first discovered magnetic substance, magnetite, is a ferrite and was originally believed to be a ferromagnet; Louis Néel disproved this, however, after discovering ferrimagnetism.
Superparamagnetism
Main article: Superparamagnetism
When a ferromagnet or ferrimagnet is sufficiently small, it acts like a single magnetic spin that is subject to Brownian motion. Its response to a magnetic field is qualitatively similar to the response of a paramagnet, but much larger.
Other types of magnetism
Metamagnetism
Molecule-based magnets
Single-molecule magnet
Spin glass
Electromagnet
An electromagnet attracts paper clips when current is applied creating a magnetic field. The electromagnet loses them when current and magnetic field are removed.
An electromagnet is a type of magnet in which the magnetic field is produced by an electric current.[14] The magnetic field disappears when the current is turned off. Electromagnets usually consist of a large number of closely spaced turns of wire that create the magnetic field. The wire turns are often wound around a magnetic core made from a ferromagnetic or ferrimagnetic material such as iron; the magnetic core concentrates the magnetic flux and makes a more powerful magnet.
The main advantage of an electromagnet over a permanent magnet is that the magnetic field can be quickly changed by controlling the amount of electric current in the winding. However, unlike a permanent magnet that needs no power, an electromagnet requires a continuous supply of current to maintain the magnetic field.
Electromagnets are widely used as components of other electrical devices, such as motors, generators, relays, solenoids, loudspeakers, hard disks, MRI machines, scientific instruments, and magnetic separation equipment. Electromagnets are also employed in industry for picking up and moving heavy iron objects such as scrap iron and steel.[15] Electromagnetism was discovered in 1820.[16]
Magnetism, electricity, and special relativity
Main article: Classical electromagnetism and special relativity
As a consequence of Einstein's theory of special relativity, electricity and magnetism are fundamentally interlinked. Both magnetism lacking electricity, and electricity without magnetism, are inconsistent with special relativity, due to such effects as length contraction, time dilation, and the fact that the magnetic force is velocity-dependent. However, when both electricity and magnetism are taken into account, the resulting theory (electromagnetism) is fully consistent with special relativity.[11][17] In particular, a phenomenon that appears purely electric or purely magnetic to one observer may be a mix of both to another, or more generally the relative contributions of electricity and magnetism are dependent on the frame of reference. Thus, special relativity "mixes" electricity and magnetism into a single, inseparable phenomenon called electromagnetism, analogous to how relativity "mixes" space and time into spacetime.
All observations on electromagnetism apply to what might be considered to be primarily magnetism, e.g. perturbations in the magnetic field are necessarily accompanied by a nonzero electric field, and propagate at the speed of light.
Magnetic fields in a material
See also: Magnetic field § H and B inside and outside of magnetic materials
In a vacuum,
\( \mathbf{B} \ = \ \mu_0\mathbf{H}, \)
where μ0 is the vacuum permeability.
In a material,
\( \mathbf{B} \ = \ \mu_0(\mathbf{H} + \mathbf{M}). \ \)
The quantity μ0M is called magnetic polarization.
If the field H is small, the response of the magnetization M in a diamagnet or paramagnet is approximately linear:
\( \mathbf{M} = \chi \mathbf{H}, \)
the constant of proportionality being called the magnetic susceptibility. If so,
\( {\displaystyle \mu _{0}(\mathbf {H} +\mathbf {M} )\ =\ \mu _{0}(1+\chi )\mathbf {H} \ =\ \mu _{r}\mu _{0}\mathbf {H} \ =\ \mu \mathbf {H} .} \)
In a hard magnet such as a ferromagnet, M is not proportional to the field and is generally nonzero even when H is zero (see Remanence).
Magnetic force
Magnetic lines of force of a bar magnet shown by iron filings on paper
File:Magnet bar.ogvPlay media
Detecting magnetic field with compass and with iron filings
Main article: Magnetic field
The phenomenon of magnetism is "mediated" by the magnetic field. An electric current or magnetic dipole creates a magnetic field, and that field, in turn, imparts magnetic forces on other particles that are in the fields.
Maxwell's equations, which simplify to the Biot–Savart law in the case of steady currents, describe the origin and behavior of the fields that govern these forces. Therefore, magnetism is seen whenever electrically charged particles are in motion—for example, from movement of electrons in an electric current, or in certain cases from the orbital motion of electrons around an atom's nucleus. They also arise from "intrinsic" magnetic dipoles arising from quantum-mechanical spin.
The same situations that create magnetic fields—charge moving in a current or in an atom, and intrinsic magnetic dipoles—are also the situations in which a magnetic field has an effect, creating a force. Following is the formula for moving charge; for the forces on an intrinsic dipole, see magnetic dipole.
When a charged particle moves through a magnetic field B, it feels a Lorentz force F given by the cross product:[18]
\( \mathbf{F} = q (\mathbf{v} \times \mathbf{B}) \)
where
q is the electric charge of the particle, and
v is the velocity vector of the particle
Because this is a cross product, the force is perpendicular to both the motion of the particle and the magnetic field. It follows that the magnetic force does no work on the particle; it may change the direction of the particle's movement, but it cannot cause it to speed up or slow down. The magnitude of the force is
\( F=qvB\sin\theta\,
where \( \theta \) is the angle between v and B.
One tool for determining the direction of the velocity vector of a moving charge, the magnetic field, and the force exerted is labeling the index finger "V", the middle finger "B", and the thumb "F" with your right hand. When making a gun-like configuration, with the middle finger crossing under the index finger, the fingers represent the velocity vector, magnetic field vector, and force vector, respectively. See also right-hand rule.
Magnetic dipoles
Main article: Magnetic dipole
A very common source of magnetic field found in nature is a dipole, with a "South pole" and a "North pole", terms dating back to the use of magnets as compasses, interacting with the Earth's magnetic field to indicate North and South on the globe. Since opposite ends of magnets are attracted, the north pole of a magnet is attracted to the south pole of another magnet. The Earth's North Magnetic Pole (currently in the Arctic Ocean, north of Canada) is physically a south pole, as it attracts the north pole of a compass. A magnetic field contains energy, and physical systems move toward configurations with lower energy. When diamagnetic material is placed in a magnetic field, a magnetic dipole tends to align itself in opposed polarity to that field, thereby lowering the net field strength. When ferromagnetic material is placed within a magnetic field, the magnetic dipoles align to the applied field, thus expanding the domain walls of the magnetic domains.
Magnetic monopoles
Main article: Magnetic monopole
Since a bar magnet gets its ferromagnetism from electrons distributed evenly throughout the bar, when a bar magnet is cut in half, each of the resulting pieces is a smaller bar magnet. Even though a magnet is said to have a north pole and a south pole, these two poles cannot be separated from each other. A monopole—if such a thing exists—would be a new and fundamentally different kind of magnetic object. It would act as an isolated north pole, not attached to a south pole, or vice versa. Monopoles would carry "magnetic charge" analogous to electric charge. Despite systematic searches since 1931, as of 2010, they have never been observed, and could very well not exist.[19]
Nevertheless, some theoretical physics models predict the existence of these magnetic monopoles. Paul Dirac observed in 1931 that, because electricity and magnetism show a certain symmetry, just as quantum theory predicts that individual positive or negative electric charges can be observed without the opposing charge, isolated South or North magnetic poles should be observable. Using quantum theory Dirac showed that if magnetic monopoles exist, then one could explain the quantization of electric charge—that is, why the observed elementary particles carry charges that are multiples of the charge of the electron.
Certain grand unified theories predict the existence of monopoles which, unlike elementary particles, are solitons (localized energy packets). The initial results of using these models to estimate the number of monopoles created in the Big Bang contradicted cosmological observations—the monopoles would have been so plentiful and massive that they would have long since halted the expansion of the universe. However, the idea of inflation (for which this problem served as a partial motivation) was successful in solving this problem, creating models in which monopoles existed but were rare enough to be consistent with current observations.[20]
Units
SI
SI electromagnetism units
|
||||
---|---|---|---|---|
Symbol[21] | Name of quantity | Unit name | Symbol | Base units |
Q | electric charge | coulomb | C | A⋅s |
I | electric current | ampere | A | A (= W/V = C/s) |
J | electric current density | ampere per square metre | A/m2 | A⋅m−2 |
U, ΔV, Δφ; E | potential difference; electromotive force | volt | V | J/C = kg⋅m2⋅s−3⋅A−1 |
R; Z; X | electric resistance; impedance; reactance | ohm | Ω | V/A = kg⋅m2⋅s−3⋅A−2 |
ρ | resistivity | ohm metre | Ω⋅m | kg⋅m3⋅s−3⋅A−2 |
P | electric power | watt | W | V⋅A = kg⋅m2⋅s−3 |
C | capacitance | farad | F | C/V = kg−1⋅m−2⋅A2⋅s4 |
ΦE | electric flux | volt metre | V⋅m | kg⋅m3⋅s−3⋅A−1 |
E | electric field strength | volt per metre | V/m | N/C = kg⋅m⋅A−1⋅s−3 |
D | electric displacement field | coulomb per square metre | C/m2 | A⋅s⋅m−2 |
ε | permittivity | farad per metre | F/m | kg−1⋅m−3⋅A2⋅s4 |
χe | electric susceptibility | (dimensionless) | 1 | 1 |
G; Y; B | conductance; admittance; susceptance | siemens | S | Ω−1 = kg−1⋅m−2⋅s3⋅A2 |
κ, γ, σ | conductivity | siemens per metre | S/m | kg−1⋅m−3⋅s3⋅A2 |
B | magnetic flux density, magnetic induction | tesla | T | Wb/m2 = kg⋅s−2⋅A−1 = N⋅A−1⋅m−1 |
Φ, ΦM, ΦB | magnetic flux | weber | Wb | V⋅s = kg⋅m2⋅s−2⋅A−1 |
H | magnetic field strength | ampere per metre | A/m | A⋅m−1 |
L, M | inductance | henry | H | Wb/A = V⋅s/A = kg⋅m2⋅s−2⋅A−2 |
μ | permeability | henry per metre | H/m | kg⋅m⋅s−2⋅A−2 |
χ | magnetic susceptibility | (dimensionless) | 1 | 1 |
Other
gauss – the centimeter-gram-second (CGS) unit of magnetic field (denoted B).
oersted – the CGS unit of magnetizing field (denoted H)
maxwell – the CGS unit for magnetic flux
gamma – a unit of magnetic flux density that was commonly used before the tesla came into use (1.0 gamma = 1.0 nanotesla)
μ0 – common symbol for the permeability of free space (4π × 10−7 newton/(ampere-turn)2)
Living things
A live frog levitates inside a 32 mm diameter vertical bore of a Bitter solenoid in a very strong magnetic field—about 16 teslas
Some organisms can detect magnetic fields, a phenomenon known as magnetoception. Some materials in living things are ferromagnetic, though it is unclear if the magnetic properties serve a special function or are merely a byproduct of containing iron. For instance, chitons, a type of marine mollusk, produce magnetite to harden their teeth, and even humans produce magnetite in bodily tissue.[22] Magnetobiology studies the effects of magnetic fields on living organisms; fields naturally produced by an organism are known as biomagnetism. Many biological organisms are mostly made of water, and because water is diamagnetic, extremely strong magnetic fields can repel these living things.
Quantum-mechanical origin of magnetism
While heuristic explanations based on classical physics can be formulated, diamagnetism, paramagnetism and ferromagnetism can only be fully explained using quantum theory.[23][24] A successful model was developed already in 1927, by Walter Heitler and Fritz London, who derived, quantum-mechanically, how hydrogen molecules are formed from hydrogen atoms, i.e. from the atomic hydrogen orbitals u A {\displaystyle u_{A}} u_A and u B {\displaystyle u_{B}} u_B centered at the nuclei A and B, see below. That this leads to magnetism is not at all obvious, but will be explained in the following.
According to the Heitler–London theory, so-called two-body molecular σ {\displaystyle \sigma } \sigma -orbitals are formed, namely the resulting orbital is:
\( \psi(\mathbf r_1,\,\,\mathbf r_2)=\frac{1}{\sqrt{2}}\,\,\left (u_A(\mathbf r_1)u_B(\mathbf r_2)+u_B(\mathbf r_1)u_A(\mathbf r_2)\right ) \)
Here the last product means that a first electron, r1, is in an atomic hydrogen-orbital centered at the second nucleus, whereas the second electron runs around the first nucleus. This "exchange" phenomenon is an expression for the quantum-mechanical property that particles with identical properties cannot be distinguished. It is specific not only for the formation of chemical bonds, but also for magnetism. That is, in this connection the term exchange interaction arises, a term which is essential for the origin of magnetism, and which is stronger, roughly by factors 100 and even by 1000, than the energies arising from the electrodynamic dipole-dipole interaction.
As for the spin function \(\chi (s_1,s_2) \), which is responsible for the magnetism, we have the already mentioned Pauli's principle, namely that a symmetric orbital (i.e. with the + sign as above) must be multiplied with an antisymmetric spin function (i.e. with a − sign), and vice versa. Thus:
\( \chi (s_1,\,\,s_2)=\frac{1}{\sqrt{2}}\,\,\left (\alpha (s_1)\beta (s_2)-\beta (s_1)\alpha (s_2)\right ), \)
I.e., not only \( u_A \) and \( u_B \) must be substituted by α and β, respectively (the first entity means "spin up", the second one "spin down"), but also the sign + by the − sign, and finally ri by the discrete values si (= ±½); thereby we have \( \alpha(+1/2)=\beta(-1/2)=1 \) and \( \alpha(-1/2)=\beta(+1/2)=0 \). The "singlet state", i.e. the − sign, means: the spins are antiparallel, i.e. for the solid we have antiferromagnetism, and for two-atomic molecules one has diamagnetism. The tendency to form a (homoeopolar) chemical bond (this means: the formation of a symmetric molecular orbital, i.e. with the + sign) results through the Pauli principle automatically in an antisymmetric spin state (i.e. with the − sign). In contrast, the Coulomb repulsion of the electrons, i.e. the tendency that they try to avoid each other by this repulsion, would lead to an antisymmetric orbital function (i.e. with the − sign) of these two particles, and complementary to a symmetric spin function (i.e. with the + sign, one of the so-called "triplet functions"). Thus, now the spins would be parallel (ferromagnetism in a solid, paramagnetism in two-atomic gases).
The last-mentioned tendency dominates in the metals iron, cobalt and nickel, and in some rare earths, which are ferromagnetic. Most of the other metals, where the first-mentioned tendency dominates, are nonmagnetic (e.g. sodium, aluminium, and magnesium) or antiferromagnetic (e.g. manganese). Diatomic gases are also almost exclusively diamagnetic, and not paramagnetic. However, the oxygen molecule, because of the involvement of π-orbitals, is an exception important for the life-sciences.
The Heitler-London considerations can be generalized to the Heisenberg model of magnetism (Heisenberg 1928).
The explanation of the phenomena is thus essentially based on all subtleties of quantum mechanics, whereas the electrodynamics covers mainly the phenomenology.
See also
Coercivity
Gravitomagnetism
Magnetic hysteresis
Magnetar
Magnetic bearing
Magnetic circuit
Magnetic cooling
Magnetic field viewing film
Magnetic stirrer
Magnetic structure
Magnetism and temperature
Micromagnetism
Neodymium magnet
Plastic magnet
Rare-earth magnet
Spin wave
Spontaneous magnetization
Vibrating-sample magnetometer
References
Jiles, David (2 September 2015). Introduction to magnetism and magnetic materials (Third ed.). Boca Raton. ISBN 978-1-4822-3887-7. OCLC 909323904.
Du Trémolet de Lacheisserie, Étienne; Damien Gignoux; Michel Schlenker (2005). Magnetism: Fundamentals. Springer. pp. 3–6. ISBN 978-0-387-22967-6.
Platonis Opera, Meyer and Zeller, 1839, p. 989.
The location of Magnesia is debated; it could be the region in mainland Greece or Magnesia ad Sipylum. See, for example, "Magnet". Language Hat blog. 28 May 2005. Retrieved 22 March 2013.
Fowler, Michael (1997). "Historical Beginnings of Theories of Electricity and Magnetism". Retrieved 2008-04-02.
Kumar Goyal, Rajendra (2017). Nanomaterials and Nanocomposites: Synthesis, Properties, Characterization Techniques, and Applications. CRC Press. p. 171. ISBN 9781498761673.
The section "Fanying 2" (反應第二) of The Guiguzi: "其察言也,不失若磁石之取鍼,舌之取燔骨".
Li, Shu-hua (1954). "Origine de la Boussole II. Aimant et Boussole". Isis (in French). 45 (2): 175–196. doi:10.1086/348315. JSTOR 227361. S2CID 143585290. "un passage dans le Liu-che-tch'ouen-ts'ieou [...]: “La pierre d'aimant fait venir le fer ou elle l'attire.”"
From the section "Jingtong" (精通) of the "Almanac of the Last Autumn Month" (季秋紀): "慈石召鐵,或引之也]"
In the section "A Last Word on Dragons" (亂龍篇 Luanlong) of the Lunheng: "Amber takes up straws, and a load-stone attracts needles" (頓牟掇芥,磁石引針).
Schmidl, Petra G. (1996–1997). "Two Early Arabic Sources On The Magnetic Compass". Journal of Arabic and Islamic Studies. 1: 81–132.
A. Einstein: "On the Electrodynamics of Moving Bodies", June 30, 1905.
HP Meyers (1997). Introductory solid state physics (2 ed.). CRC Press. p. 362; Figure 11.1. ISBN 9781420075021.
Catherine Westbrook; Carolyn Kaut; Carolyn Kaut-Roth (1998). MRI (Magnetic Resonance Imaging) in practice (2 ed.). Wiley-Blackwell. p. 217. ISBN 978-0-632-04205-0.
Purcell 2012, p. 320,584
Merzouki, Rochdi; Samantaray, Arun Kumar; Pathak, Pushparaj Mani (2012). Intelligent Mechatronic Systems: Modeling, Control and Diagnosis. Springer Science & Business Media. pp. 403–405. ISBN 978-1447146285.
Sturgeon, W. (1825). "Improved Electro Magnetic Apparatus". Trans. Royal Society of Arts, Manufactures, & Commerce. 43: 37–52. cited in Miller, T.J.E (2001). Electronic Control of Switched Reluctance Machines. Newnes. p. 7. ISBN 978-0-7506-5073-1.
Griffiths 1998, chapter 12
Jackson, John David (1999). Classical electrodynamics (3rd ed.). New York: Wiley. ISBN 978-0-471-30932-1.
Milton mentions some inconclusive events (p. 60) and still concludes that "no evidence at all of magnetic monopoles has survived" (p.3). Milton, Kimball A. (June 2006). "Theoretical and experimental status of magnetic monopoles". Reports on Progress in Physics. 69 (6): 1637–1711. arXiv:hep-ex/0602040. Bibcode:2006RPPh...69.1637M. doi:10.1088/0034-4885/69/6/R02. S2CID 119061150..
Guth, Alan (1997). The Inflationary Universe: The Quest for a New Theory of Cosmic Origins. Perseus. ISBN 978-0-201-32840-0. OCLC 38941224..
International Union of Pure and Applied Chemistry (1993). Quantities, Units and Symbols in Physical Chemistry, 2nd edition, Oxford: Blackwell Science. ISBN 0-632-03583-8. pp. 14–15. Electronic version.
Kirschvink, Joseph L.; Kobayashi-Kirshvink, Atsuko; Diaz-Ricci, Juan C.; Kirschvink, Steven J. (1992). "Magnetite in Human Tissues: A Mechanism for the Biological Effects of Weak ELF Magnetic Fields" (PDF). Bioelectromagnetics Supplement. 1: 101–113. doi:10.1002/bem.2250130710. PMID 1285705. Retrieved 29 March 2016.
The magnetism of matter, Feynman Lectures in Physics Ch 34
Ferromagnetism, Feynman Lectures in Physics Ch 36
Further reading
David K. Cheng (1992). Field and Wave Electromagnetics. Addison-Wesley Publishing Company, Inc. ISBN 978-0-201-12819-2.
Furlani, Edward P. (2001). Permanent Magnet and Electromechanical Devices: Materials, Analysis and Applications. Academic Press. ISBN 978-0-12-269951-1. OCLC 162129430.
Griffiths, David J. (1998). Introduction to Electrodynamics (3rd ed.). Prentice Hall. ISBN 978-0-13-805326-0. OCLC 40251748.
Kronmüller, Helmut. (2007). Handbook of Magnetism and Advanced Magnetic Materials, 5 Volume Set. John Wiley & Sons. ISBN 978-0-470-02217-7. OCLC 124165851.
Purcell, Edward M. (2012). Electricity and magnetism (3rd ed.). Cambridge: Cambridge Univ. Press. ISBN 9781-10701-4022.
Tipler, Paul (2004). Physics for Scientists and Engineers: Electricity, Magnetism, Light, and Elementary Modern Physics (5th ed.). W.H. Freeman. ISBN 978-0-7167-0810-0. OCLC 51095685.
Bibliography
The Exploratorium Science Snacks – Subject:Physics/Electricity & Magnetism
Magnetism and magnetization – Astronoo
A collection of magnetic structures – MAGNDATA
vte
Magnetic states
diamagnetism superdiamagnetism paramagnetism superparamagnetism ferromagnetism superferromagnetism antiferromagnetism ferrimagnetism helimagnetism metamagnetism mictomagnetism spin glass spin ice ferromagnetic superconductor
Hellenica World - Scientific Library
Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License