Many materials have a well-characterized refractive index, but these indexes depend strongly upon the frequency of light. Standard refractive index measurements are taken at the "yellow doublet" sodium D line, with a wavelength of 589 nanometers.
There are also weaker dependencies on temperature, pressure/stress, etc., as well on precise material compositions (presence of dopants, etc.); for many materials and typical conditions, however, these variations are at the percent level or less. Thus, it is especially important to cite the source for an index measurement if precision is required.
In general, an index of refraction is a complex number with both a real and imaginary part, where the latter indicates the strength of absorption loss at a particular wavelength—thus, the imaginary part is sometimes called the extinction coefficient k {\displaystyle k} k. Such losses become particularly significant, for example, in metals at short (e.g. visible) wavelengths, and must be included in any description of the refractive index.
Refraction, critical angle and total internal reflection of light at the interface between two media.
List
Name of Material | λ (nm) | refractive index no. n | Ref. |
---|---|---|---|
Vacuum | 1 (by definition) | ||
Air at STP | 1.000273 | ||
Gases at 0 °C and 1 atm | |||
Air | 589.29 | 1.000293 | [1] |
Carbon dioxide | 589.29 | 1.001 | [2][3][4] |
Helium | 589.29 | 1.000036 | [1] |
Hydrogen | 589.29 | 1.000132 | [1] |
Liquids at 20 °C | |||
Arsenic trisulfide and sulfur in methylene iodide | 1.9 | [5] | |
Carbon disulfide | 589.29 | 1.628 | [1] |
Benzene | 589.29 | 1.501 | [1] |
Carbon tetrachloride | 589.29 | 1.461 | [1] |
Silicone oil (nD25) | 589.29 | 1.393–1.403 | [6] |
Kerosene | 1.39 | ||
Ethanol (ethyl alcohol) | 589.29 | 1.361 | [1] |
Acetone | 1.36 | ||
Water | 589.29 | 1.333 | [1] |
10% Glucose solution in water | 589.29 | 1.3477 | [7] |
20% Glucose solution in water | 589.29 | 1.3635 | [7] |
60% Glucose solution in water | 589.29 | 1.4394 | [7] |
Solids at room temperature | |||
Silicon carbide (Moissanite; 6H form) | 589.29 | 2.65 | [8] |
Titanium dioxide (rutile phase) | 589.29 | 2.614 | [9][10] |
Diamond | 589.29 | 2.417 | [1] |
Strontium titanate | 589.29 | 2.41 | [11] |
Tantalum Pentoxide | 589.29 | 2.15 | [12] |
Amber | 589.29 | 1.55 | [1] |
Sodium chloride | 589.29 | 1.544 | [13] |
Fused silica (a pure form of glass, also called fused quartz) | 589.29 | 1.458 | [1][14] |
Other materials | |||
Liquid helium | 1.025 | ||
Perfluorohexane (Fluorinert FC-72) | 1.251 | [15] | |
Water ice | 1.31 | ||
TFE/PDD (Teflon AF) | 1.315 | [16][17] | |
Cryolite | 1.338 | ||
Cytop | 1.34 | [18] | |
Polytetrafluoroethylene (Teflon) | 1.35–1.38 | [19] | |
Sugar solution, 25% | 1.3723 | [20] | |
Cornea (human) | 1.373/1.380/1.401 | [21] | |
Lens (human) | 1.386–1.406 | ||
Liver (human) | 964 | 1.369 | [22] |
Intestinal mucosa (human) | 964 | 1.329-1.338 | [23] |
Ethylene tetrafluoroethylene (ETFE) | 1.403 | [24] | |
Sylgard 184 (polydimethylsiloxane) | 1.4118 | [25] | |
Sugar solution, 50% | 1.4200 | [20] | |
Polylactic acid | 1.46 | [26] | |
Pyrex (a borosilicate glass) | 1.470 | [27] | |
Vegetable oil | 1.47 | [28] | |
Glycerol | 1.4729 | ||
Sugar solution, 75% | 1.4774 | [20] | |
Poly(methyl methacrylate) (PMMA) | 1.4893–1.4899 | ||
Halite (rock salt) | 1.516 | ||
Plate Glass (window glass) | 1.52 | ||
Crown glass (pure) | 1.50–1.54 | ||
PETg | 1.57 | ||
Polyethylene terephthalate (PET) | 1.5750 | ||
Polycarbonate | 150 | 1.60 | [30] |
Crown glass (impure) | 1.485–1.755 | ||
Flint glass (pure) | 1.60–1.62 | ||
Bromine | 1.661 | ||
Flint glass (impure) | 1.523–1.925 | ||
Sapphire | 1.762–1.778 | ||
Boron nitride | 2-2.14 | [31] | |
Cubic zirconia | 2.15–2.18 | [32] | |
Potassium niobate (KNbO3) | 2.28 | ||
Zinc oxide | 390 | 2.4 | |
Cinnabar (mercury sulfide) | 3.02 | ||
Silicon | 1200 - 8500 | 3.42–3.48 | [33] |
Gallium(III) phosphide | 3.5 | ||
Gallium(III) arsenide | 3.927 | ||
Germanium | 3000 - 16000 | 4.05–4.01 | [34] |
See also
Sellmeier equation
Corrective lens#Ophthalmic material property tables
Optical properties of water and ice
References
Zajac, Alfred; Hecht, Eugene (18 March 2003). Optics, Fourth Edit. Pearson Higher Education. ISBN 978-0-321-18878-6.
Morgan, Joseph (1953). Introduction to Geometrical and Physical Optics. McGraw-Hill Book Company, INC.
Hodgman, Charles D. (1957). Handbook of Chemistry and Physics. Chemical Rubber Publishing Co.
Pedrotti, Frank L.; Pedrotti, Leno M.; Pedrotti, Leno S. (2007). Introduction to Optics, Third Edition. Pearson Prentice Hall. p. 221. ISBN 978-0-13-149933-1.
Meyrowitz, R, A compilation and classification of immersion media of high index of refraction, American Mineralogist 40: 398 (1955)
"Silicone Fluids: Stable and Inert Media" (PDF). Gelest, Inc. 1998.
Lide, David R. Lide, ed. (2001). CRC Handbook of Physics and Chemistry (82nd ed.). Cleveland, OH: The Chemical Rubber Company. ISBN 978-0-8493-0482-8.
"Silicon Carbide (SiC) - Optical properties". Ioffe Institute. Retrieved 6 June 2009.
Polyanskiy, Mikhail N. "Optical constants of TiO2 (Titanium dioxide)". Refractive Index Database.
Shannon, Robert D.; Shannon, Ruth C.; Medenbach, Olaf; Fischer, Reinhard X. (25 October 2002). "Refractive Index and Dispersion of Fluorides and Oxides" (PDF). J. Phys. Chem. Ref. Data. 31 (4): 931–970. Bibcode:2002JPCRD..31..931S. doi:10.1063/1.1497384.
Frye, Asa; French, R. H.; Bonnell, D. A. (2003). "Optical properties and electronic structure of oxidized and reduced single-crystal strontium titanate" (PDF). Zeitschrift für Metallkunde. 94 (3): 226. doi:10.3139/146.030226. Retrieved 11 July 2014.
Polyanskiy, Mikhail (2018). "Optical constants of Ta2O5 (Tantalum pentoxide)". Refractive Index Database.
Serway, Raymond A.; Faughn, Jerry S. (2003). College Physics, 6th Edition. Brooks/Cole. p. 692. ISBN 978-0-03-035114-3.
Tan, G; Lemon, M.; Jones, D.; French, R. (2005). "Optical properties and London dispersion interaction of amorphous and crystalline {SiO2} determined by vacuum ultraviolet spectroscopy and spectroscopic ellipsometry" (PDF). Physical Review B. 72 (20): 205117. Bibcode:2005PhRvB..72t5117T. doi:10.1103/PhysRevB.72.205117. Retrieved 11 July 2014.
"Fluorinert Electronic Liquid FC-72 Product Information" (PDF). Retrieved 1 May 2017.
"Teflon AF". Retrieved 14 October 2010.
Yang, Min K. (July 2008). "Optical properties of Teflon® {AF} amorphous fluoropolymers" (PDF). Journal of Micro/Nano Lithography. 7 (3): 033010. doi:10.1117/1.2965541. Retrieved 11 July 2014.
"CYTOP Amorphous Fluoropolymer". AGCCE Chemicals Europe, Ltd. Archived from the original on 24 August 2010. Retrieved 14 October 2010.
French, Roger H.; Rodriguez-Parada, J. M.; Yang, M. K.; et al. (2009). Optical properties of materials for concentrator photovoltaic systems (PDF). IEEE Photovoltaic Specialists Conference. p. 000394. doi:10.1109/PVSC.2009.5411657. ISBN 978-1-4244-2949-3. Retrieved 11 July 2014.
"Manual for Sugar Solution Prism" (PDF). A/S S. Frederiksen. 3 August 2005. Archived from the original (PDF) on 3 March 2016. Retrieved 21 March 2012.
Patel, S; Marshall, J; Fitzke, FW 3rd. (March–April 1995). "Refractive index of the human corneal epithelium and stroma". J Refract Surg. 11 (2): 100–105. PMID 7634138.
Giannios, P; et, al (2016). "Visible to near-infrared refractive properties of freshly-excised human-liver tissues: marking hepatic malignancies". Sci. Rep. 6: 27910. Bibcode:2016NatSR...627910G. doi:10.1038/srep27910. PMC 4906272. PMID 27297034.
Giannios, P; al, et (2016). "Complex refractive index of normal and malignant human colorectal tissue". J. Biophotonics. 10 (2): 303–310. doi:10.1002/jbio.201600001. PMID 27091794.
Wright, S.F., Zadrazil, I. & Markides, C.N. (2017). "A review of solid–fluid selection options for optical-based measurements in single-phase liquid, two-phase liquid–liquid and multiphase solid–liquid flows". Experiments in Fluids. 58 (9): 108. Bibcode:2017ExFl...58..108W. doi:10.1007/s00348-017-2386-y.
"184 Silicone Elastomer" (PDF) (Product Information). Dow Corning. Retrieved 11 December 2012.[permanent dead link]
Gonçalves, Carla M. B.; Coutinho, Joa˜o A. P.; Marrucho, Isabel M. (2010). "Optical Properties". Poly(Lactic Acid): Synthesis, Structures, Properties, Processing, and Applications; Chapter 8: Optical Properties. p. 97. doi:10.1002/9780470649848.ch8. ISBN 9780470649848.
University of Liverpool. "Absolute Refractive Index". Materials Teaching Educational Resources. MATTER Project. Archived from the original on 12 October 2007. Retrieved 18 October 2007.
Index Of Refraction Of Vegetable Oil, The Physics Factbook.
"High temperature glass melt property database for process modeling"; Eds.: Thomas P. Seward III and Terese Vascott; The American Ceramic Society, Westerville, Ohio, 2005, ISBN 1-57498-225-7
C. R. Garcia, J. Correa, D. Espalin, J. H. Barton, R. C. Rumpf, R. Wicker, V. Gonzalez, "3D Printing of Anisotropic Metamaterials," PIER Lett, Vol. 34, pp. 75-82, 2012.
"Combat Boron Nitride" (PDF). Saint Gobain. Archived from the original (PDF) on 18 February 2015. Retrieved 12 June 2016.
French, Roger H.; Glass, S.; Ohuchi, F.; et al. (1994). "Experimental and theoretical determination of the electronic structure and optical properties of three phases of {ZrO2}" (PDF). Physical Review B. 49 (8): 5133. Bibcode:1994PhRvB..49.5133F. doi:10.1103/PhysRevB.49.5133. Retrieved 11 July 2014.
"Silicon". Pmoptics.com. Retrieved 21 August 2014.
"Germanium". Pmoptics.com. Retrieved 21 August 2014.
Hellenica World - Scientific Library
Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License