In dynamical systems theory, the Liouville–Arnold theorem states that if, in a Hamiltonian dynamical system with n degrees of freedom, there are also known n first integrals of motion that are independent and in involution, then there exists a canonical transformation to action-angle coordinates in which the transformed Hamiltonian is dependent only upon the action coordinates and the angle coordinates evolve linearly in time. Thus the equations of motion for the system can be solved in quadratures if the canonical transform is explicitly known. The theorem is named after Joseph Liouville and Vladimir Arnold.[1][2][3][4][5](pp270–272)
References
J. Liouville, « Note sur l'intégration des équations différentielles de la Dynamique, présentée au Bureau des Longitudes le 29 juin 1853 », JMPA, 1855, p. 137-138, pdf
Fabio Benatti (2009). Dynamics, Information and Complexity in Quantum Systems. Springer Science & Business Media. p. 16. ISBN 978-1-4020-9306-7.
P. Tempesta; P. Winternitz; J. Harnad; W. Miller Jr; G. Pogosyan; M. Rodriguez, eds. (2004). Superintegrability in Classical and Quantum Systems. American Mathematical Society. p. 48. ISBN 978-0-8218-7032-7.
Christopher K. R. T. Jones; Alexander I. Khibnik, eds. (2012). Multiple-Time-Scale Dynamical Systems. Springer Science & Business Media. p. 1. ISBN 978-1-4613-0117-2.
Arnold, V. I. (1989). Mathematical Methods of Classical Mechanics. Springer. ISBN 9780387968902.
Hellenica World - Scientific Library
Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License