The European Spallation Source ERIC (ESS) is a multi-disciplinary research facility based on what will be the world's most powerful pulsed neutron source.[1] It is currently under construction in Lund, Sweden.[2] The ESS Data Management and Software Centre (DMSC) will be located in Copenhagen, Denmark.[3] The 13 European member countries act as partners in the construction and operation of ESS.[4] ESS will start the scientific user programme in 2023, and the construction phase will be complete by 2025.[5] ESS is the world's most powerful next-generation neutron source, and will enable scientists to see and understand basic atomic structures and forces at length and time scales unachievable at other neutron sources.[6]
ESS became a European Research Infrastructure Consortium, or ERIC,[7] on 1 October 2015. The European Spallation Source ERIC is "a joint European organisation committed to constructing and operating the world's leading facility for research using neutrons."[8][9]
ESS will use spallation, a process in which fragments of material (spall) are ejected from a body due to impact or stress. The future facility is composed of a linear accelerator in which protons are accelerated and collide with a rotating, helium-cooled tungsten target.[10] By this process, intense pulses of neutrons are emitted and led through beamlines to experimental stations, where research is done on different materials. This will help discover and develop new materials with applications in manufacturing, pharmaceutical drugs, aerospace, engines, plastics, energy, telecommunications, transportation, information technology and biotechnology.[4][11][12][13] According to its designers, ESS will provide neutron beams up to 30 times brighter than any current neutron source.[14] ESS is also designed to be carbon-neutral and is expected to reduce CO2 emissions in the region.[15][16]
Information on the scientific instruments selected to be built at ESS can be found here.
History
When the ISIS neutron source was built in England in 1985, its radical success in producing indirect images of molecular structures eventually raised the possibility of a far more powerful spallation source. By 1993, the European Neutron Scattering Association began to advocate what would be the most ambitious and broad-based spallation source in the world, ESS.[17]
Neutron science soon became a critical tool in the development of industrial and consumer products worldwide. So much so that the Organization for Economic Development (OECD), declared in 1999 that a new generation of high-intensity neutron sources should be built, one each in North America, Asia and Europe.[17] Europe's challenge was its diverse collection of national governments, and an active research community numbering in the thousands. In 2001, a European roadmap for developing accelerator driven systems for nuclear waste incineration estimated that the ESS could have the beam ready for users in 2010.[18] A European international task force gathered in Bonn in 2002 to review the findings and a positive consensus emerged to build ESS. The stakeholders group met a year later to review the task force's progress, and in 2003 a new design concept was adopted that set the course for beginning operations by 2019.[17]
Over the next five years a competitive and yet collaborative site selection process played out and Lund, Sweden was chosen as the preferred site; the definitive selection of Lund was announced in Brussels on 28 May 2009.[17] On 1 July 2010, the staff and operations of ESS Scandinavia were transferred from Lund University to 'European Spallation Source ESS AB', a limited liability company set up to design, construct and operate the European Spallation Source in Lund. The company's headquarters are situated in central Lund.[19]
ESS became a European Research Infrastructure Consortium, or ERIC, on 1 October 2015. The Founding Members of the European Spallation Source ERIC are the Czech Republic, Denmark, Estonia, France, Germany, Hungary, Italy, Norway, Poland, Spain, Sweden, Switzerland and United Kingdom.[7]
As of 2013 the estimated cost of the facility will be about €1.843 bn. Host nations Sweden and Denmark plan to give about half of the sum. However the negotiations about the exact contributions from every partner are still in progress.[20] From 2010 to 30 September 2015, ESS was operated as a Swedish aktiebolag, or AB.[17]
Site selection
Originally, three possible ESS sites were under consideration: Bilbao (Spain), Debrecen (Hungary) and Lund (Sweden).[21]
On 28 May 2009, seven countries indicated support for placing ESS in Sweden. Furthermore, Switzerland and Italy indicated that they would support the site in majority.[22] On 6 June 2009, Spain withdrew the Bilbao candidacy and signed a collaboration agreement with Sweden, supporting Lund as the main site, but with key component development work being performed in Bilbao. This effectively settled the location of the ESS; detailed economical negotiations between the participating countries are now taking place.[23] On 18 December 2009, Hungary also chose to tentatively support ESS in Lund, thus withdrawing the candidacy of Debrecen.[21][24]
The construction of the facility began in early 2014, with a groundbreaking event held in September of that year. The user programme will start in 2023, and it is planned to be fully operational by 2025.[5] ESS provides weekly updates of construction progress and live construction site webcams on its website.
The spallation target and its environmental impact
The ESS source will be built around a solid tungsten target, cooled by helium gas.[25][26][27]
Radioactive substances will be generated by the spallation process, but the solid target makes the handling of these materials easier and safer than if a liquid target had been used.
ESS, E.on, and Lunds Energi are collaborating in a project aiming to get the facility to be the world's first completely sustainable large-scale research centre through investment in wind power.[28] The ESS project is expected to include an extension of the Nysted Wind Farm.
Radioactive material storage and transport will be required, but the need is much less than that of a nuclear reactor.
More information on the ESS licensing process can be found here.
ESS expects to be CO2-neutral.[29]
Recent design improvements will decrease energy usage at ESS.[30][31]
Neutron Scattering and Imaging Instruments at ESS
ESS has 15 instruments in its construction budget. They are
Diffraction:
DREAM (Bispectral Powder Diffractometer)
HEIMDAL (Hybrid Diffractometer)
MAGiC (Magnetism Single Crystal Diffractometer)
NMX (Macromolecular Crystallography)
Spectroscopy:
BIFROST (Extreme Environment Spectrometer)
CSPEC (Cold Chopper Spectrometer)
MIRACLES (Backscattering Spectrometer)
T-REX (Bispectral Chopper Spectrometer)
VESPA (Vibrational Spectrometer)
Large-scale structures:
ESTIA (Focusing Reflectometer)
FREIA (Liquids Reflectometer)
LoKI (Broadband Small Angle Neutron Scattering)
SKADI (General Purpose Small Angle Neutron Scattering)
Engineering and Imaging:
BEER (Engineering Diffractometer)
ODIN (Multi-Purpose Imaging)
See also
ISIS neutron source — Europe's only pulsed spallation source
J-PARC - The world's most powerful spallation source, located in Japan
MAX IV — synchrotron radiation facility in Lund
Spallation Neutron Source
References
"European Spallation Source - Homepage". ESS. 2014. Archived from the original on 17 May 2014. Retrieved 5 August 2014.
European Spallation Source. "Construction Site Weekly Updates". europeanspallationsource.se. Retrieved 17 July 2015.
European Spallation Source. "DMSC". europeanspallationsource.se. Retrieved 17 July 2015.
"ESS - Introduction". European Spalliation Source. 2013. Retrieved 11 March 2014.
European Spallation Source (April 2015). Activity Report 2015 (PDF). Lund: ESS. Archived from the original (PDF) on 21 July 2015. Retrieved 17 July 2015.
European Spallation Source. "Unique Capabilities of ESS". europeanspallationsource.se. Retrieved 17 July 2015.
European Spallation Source ERIC (20 August 2015). "European Commission Establishes ESS as a European Research Infrastructure Consortium". European Spallation Source. ESS. Retrieved 22 January 2016.
European Spallation Source ERIC. "ESS Organisation". European Spallation Source. ESS. Retrieved 22 January 2016.
The Copenhagen Post. "ESS officially becomes a European research facility". The Copenhagen Post. Online Post. Retrieved 22 January 2016.
European Spallation Source. "Building the Heart of ESS in Spain". europeanspallationsource.se. Retrieved 17 July 2015.
European Spallation Source. "ESS Science in Everyday Life". europeanspallationsource.se. Retrieved 17 July 2015.
Berggren, K.-F. and A. Matic 2012. Science at the ESS: A brief outline. In O. Hallonsten (ed.) In pursuit of a Promise: Perspectives on the political process to establish the European Spallation Source (ESS) in Lund, Sweden (pp 31-47). Lund: Arkiv Academic Press, 2012.
Ghosh, Pallab (10 March 2014). "UK joins 'super-microscope' project". BBC News. Retrieved 11 March 2014.
"Neutron scattering" (PDF). Institute of Physics (IOP), London. 2011. Retrieved 11 March 2014.
Brix, Lise (22 July 2015). "Godt nyt for klimaet: Dansk-svensk forskningsanlæg vil være CO2-neutralt". videnskab.dk (in Danish). videnskab.dk. Retrieved 23 July 2015.
European Spallation Source. "Energy & Sustainability". europeanspallationsource.se. ESS. Retrieved 23 July 2015.
"The ESS Story". European Spallation Source. 2013. Retrieved 11 March 2014.
A European Roadmap for Developing Accelerator Driven Systems (ADS) for Nuclear Waste Incineration pretty layout with bad picturesugly layout with good pictures
"The European Spallation Source | ESS". Europeanspallationsource.se. Retrieved 11 March 2014.
FAQ Funding and Costs - ESS
"ESS Magyarország". Esshungary.eu. Archived from the original on 2014-03-11. Retrieved 11 March 2014.
"Clear support for ESS in Sweden: A great step for European science" (Press release). Ess-scandinavia.eu. May 29, 2009. Archived from the original on 7 June 2009.
"Swedish-Spanish agreement on ESS in Lund the beginning of a new collaborative phase" (Press release). Ess-scandinavia.eu. 10 June 2009. Archived from the original on 21 December 2009.
"Hungary will become the 14th Partner in the European Spallation Source research center. All three of the former site contenders now join forces to build the ESS in Sweden". Archived from the original on 21 December 2009.
Moormann, Rainer; Bongardt, Klaus; Chiriki, Suresh (28 March 2009). "Safety aspects of high power targets for European spallation sources" (PDF). Forschungszentrum Juelich. Retrieved 1 April 2009.[permanent dead link]
Moormann, Rainer; Reiche-Begemann, Sigrid (28 March 2009). "Safety and Licensing of the European Spallation Source (ESS)" (PDF). Forschungszentrum Juelich. Archived from the original (PDF) on 18 July 2011. Retrieved 1 April 2009.
Physics World. "Sights firmly set on target". Physics World. The Institute of Physics. Retrieved 22 January 2016.
"Our unique Sustainable Energy Concept". Archived from the original on 26 January 2012.
Videnskab DK. "Godt nyt for klimaet: Dansk-svensk forskningsanlæg vil være CO2-neutralt". Videnskab DK. Retrieved 22 January 2016.
European Spallation Source ERIC. "Innovation and Engineering Set ESS on Path to Sustainability". europeanspallationsource.se. ESS. Retrieved 22 January 2016.
Parker, T. "ESS Energy Design Report 2013" (PDF). europeanspallationsource.se. ESS. Archived from the original (PDF) on 27 January 2016. Retrieved 22 January 2016.
Further reading
S. Peggs et al. ESS Technical Design Report, April 2013.
European Spallation Source. European Spallation Source Activity Report 2015, April 2015.
European Spallation Source. Feature Series: The ESS Instrument Suite, 2014–2015.
Hallonsten, O. 2012. Introduction: In pursuit of a Promise. In O. Hallonsten (ed.) In pursuit of a Promise: Perspectives on the political process to establish the European Spallation Source (ESS) in Lund, Sweden (pp 11–19). Lund: Arkiv Academic Press, 2012, p. 12.
Prolingheuer, N.; Herbst, M.; Heuel-Fabianek, B.; Moormann, R.; Nabbi, R.; Schlögl, B., Vanderborght, J. 2009: Estimating Dose Rates from Activated Groundwater at Accelerator Sites. Nuclear Technology, Vol. 168, No. 3, Dec. 2009, p. 924-930
Heuel-Fabianek, B. 2014: Partition Coefficients (Kd) for the Modelling of Transport Processes of Radionuclides in Groundwater (PDF; 9,4 MB) JÜL-Berichte, Forschungszentrum Jülich, Nr. 4375, 2014, ISSN 0944-2952
T. Parker. ESS Environmental Design Report, January 2013.
External links
European Spallation Source website. The most up-to-date source for information on the ESS project.
Weekly updates of the construction of ESS and live webcams at the construction site.
"EU FP7 Preparatory Phase Project". Archived from the original on 13 August 2010.
essworkshop.org - See how the design of instrumentation for a future ESS-Scandinavia is moving forward.
BrightnESS, EU grant project in support of ESS.
SREss, EU grant project in support of ESS.
Hellenica World - Scientific Library
Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License