ART

In mathematical physics, the Duffin–Kemmer–Petiau algebra (DKP algebra), introduced by R.J. Duffin, Nicholas Kemmer and G. Petiau, is the algebra which is generated by the Duffin–Kemmer–Petiau matrices. These matrices form part of the Duffin–Kemmer–Petiau equation that provides a relativistic description of spin-0 and spin-1 particles.

The DKP algebra is also referred to as the meson algebra.[1]

Defining relations

The Duffin–Kemmer–Petiau matrices have the defining relation[2]

\( \beta ^{a}\beta ^{b}\beta ^{c}+\beta ^{c}\beta ^{b}\beta ^{a}=\beta ^{a}\eta ^{bc}+\beta ^{c}\eta ^{ba} \)

where \( \eta ^{ab} \( stand for a constant diagonal matrix. The Duffin–Kemmer–Petiau matrices \( \beta \) for which \( \eta ^{ab} \) consists in diagonal elements (+1,-1,…,-1) form part of the Duffin–Kemmer–Petiau equation. Five-dimensional DKP matrices can be represented as:[3][4]

\( {\displaystyle \quad \beta ^{2}={\begin{pmatrix}0&0&0&-1&0\\0&0&0&0&0\\0&0&0&0&0\\1&0&0&0&0\\0&0&0&0&0\end{pmatrix}}} \quad \beta ^{2}={\begin{pmatrix}0&0&0&-1&0\\0&0&0&0&0\\0&0&0&0&0\\1&0&0&0&0\\0&0&0&0&0\end{pmatrix}}, β 3 = ( 0 0 0 0 − 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 ) {\displaystyle \quad \beta ^{3}={\begin{pmatrix}0&0&0&0&-1\\0&0&0&0&0\\0&0&0&0&0\\0&0&0&0&0\\1&0&0&0&0\end{pmatrix}}} \quad \beta ^{3}={\begin{pmatrix}0&0&0&0&-1\\0&0&0&0&0\\0&0&0&0&0\\0&0&0&0&0\\1&0&0&0&0\end{pmatrix}} \)

These five-dimensional DKP matrices represent spin-0 particles. The DKP matrices for spin-1 particles are 10-dimensional.[3] The DKP-algebra can be reduced to a direct sum of irreducible subalgebras for spin‐0 and spin‐1 bosons, the subalgebras being defined by multiplication rules for the linearly independent basis elements.[5]

Duffin–Kemmer–Petiau equation

The Duffin–Kemmer–Petiau equation (DKP equation, also: Kemmer equation) is a relativistic wave equation which describes spin-0 and spin-1 particles in the description of the standard model. For particles with nonzero mass, the DKP equation is[2]

\( (i\hbar \beta ^{a}\partial _{a}-mc)\psi =0 \)

where \( \beta ^{a} \) are Duffin–Kemmer–Petiau matrices, m is the particle's mass, \( \psi \) its wavefunction, \( \hbar \) the reduced Planck constant, c the speed of light. For massless particles, the term mc is replaced by a singular matrix \( \gamma \) that obeys the relations \( \beta ^{a}\gamma +\gamma \beta ^{a}=\beta ^{a} \) and \( \gamma ^{2}=\gamma \).

The DKP equation for spin-0 is closely linked to the Klein–Gordon equation.[4][6] and the equation for spin-1 to the Proca equations[7] It suffers the same drawback as the Klein–Gordon equation in that it calls for negative probabilities.[4] Also the De Donder–Weyl covariant Hamiltonian field equations can be formulated in terms of DKP matrices.[8]

History

The Duffin–Kemmer–Petiau algebra was introduced in the 1930s by R.J. Duffin,[9] N. Kemmer[10] and G. Petiau.[11]
Further reading

M. C. B. Fernandes, J. D. M. Vianna: On the generalized phase space approach to Duffin–Kemmer–Petiau particles, Foundations of Physics, vol. 29, no. 2, pp. 201–219, 1999, doi:10.1023/A:1018869505031 (abstract)
Marco Cezar B. Fernandes, J. David M. Vianna: On the Duffin-Kemmer-Petiau algebra and the generalized phase space, Brazilian Journal of Physics, vol. 28 n. 4, São Paulo, December 1998, ISSN 0103-9733, doi:10.1590/S0103-97331998000400024 (full text)
Pavel Winternitz et al. (eds.): Symmetry in physics: in memory of Robert T. Sharp, CRM Proceedings and Lecture Notes, 2004, ISBN 0-8218-3409-6, section "Bhabha and Duffin–Kemmer–Petiau equations: spin zero and spin one", p. 50 ff.
V. Ya. Fainberg, B. M. Pimentel: Duffin–Kemmer–Petiau and Klein–Gordon–Fock Equations for Electromagnetic, Yang–Mills and external Gravitational Field Interactions: proof of equivalence, hep-th/0003283, submitted 30. March 2000

References

Jacques Helmstetter, Artibano Micali: About the Structure of Meson Algebras, Advances in Applied Clifford Algebras, vol. 20, no. 3-4, pp. 617-629, doi:10.1007/s00006-010-0213-0, abstract
See introductory section of: Yu V. Pavlov: Duffin–Kemmer–Petiau equation with nonminimal coupling to curvature, Gravitation & Cosmology, vol. 12 (2006), no.2–3, pp. 205–208
See for example I. Boztosun, M. Karakoc, F. Yasuk, A. Durmus: Asymptotic Iteration Method Solutions to the Relativistic Duffin-Kemmer-Petiau Equation, Journal of Mathematical Physics vol. 47, 062301 (2006), doi:10.1063/1.2203429, arXiv:math-ph/0604040v1 (submitted 18 April 2006) [1]
Anton Z. Capri: Relativistic quantum mechanics and introduction to quantum field theory, World Scientific, 2002, ISBN 981-238-136-8, p. 25
Ephraim Fischbach, Michael Martin Nieto, C. K. Scott: Duffin‐Kemmer‐Petiau subalgebras: Representations and applications, Journal of Mathematical Physics, vol. 14, no. 12, 1760 (1973), doi:10.1063/1.1666249 (abstract Archived 2012-07-13 at Archive.today)
R. Casana, V.Ya. Fainberg, J.T. Lunardi, R.G. Teixeira, B.M. Pimentel: Massless DKP fields in Riemann-Cartan space-times[permanent dead link], arXiv:gr-qc/0209083v2 (submitted 23 September 2002, version of 12 March 2003)
Sergey Kruglov: Symmetry and electromagnetic interaction of fields with multi-spin. A Volume in Contemporary Fundamental Physics, ISBN 1-56072-880-9, 2000, p. 26
Igor V. Kanatchikov: On the Duffin–Kemmer–Petiau formulation of the covariant Hamiltonian dynamics in field theory, hep-th/9911/9911175v1 (submitted 23. November 1999)
R.J. Duffin: On The Characteristic Matrices of Covariant Systems, Physical Review Letters., vol. 54, 1114 (1938), doi:10.1103/PhysRev.54.1114
N. Kemmer: The particle aspect of meson theory, Proceedings of the Royal Society A, vol. 173, pp. 91–116 (1939), doi:10.1098/rspa.1939.0131
G. Petiau, University of Paris thesis (1936), published in Acad. Roy. de Belg., A. Sci. Mem. Collect.vol. 16, N 2, 1 (1936)

Physics Encyclopedia

World

Index

Hellenica World - Scientific Library

Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License