Acoustic holography is a method for estimating the sound field near a source by measuring acoustic parameters away from the source by means of an array of pressure and/or particle velocity transducers. The Measuring techniques included in acoustic holography are becoming increasingly popular in various fields, most notably those of transportation, vehicle and aircraft design, and noise, vibration, and harshness (NVH). The general idea of acoustic holography has led to different versions such as near-field acoustic holography (NAH) and statistically optimal near-field acoustic holography (SONAH). For audio rendition, the wave field synthesis is the most related procedure.
References
Scholte, Rick (2008). "Fourier based high-resolution near-field sound imaging". Technische Universiteit Eindhoven. doi:10.6100/IR639528.
J. D. Maynard; E. G. Williams; Y. Lee (October 1985). "Nearfield acoustic holography: I. Theory of generalized holography and the development of NAH". The Journal of the Acoustical Society of America. 78 (4): 1395–1413. Bibcode:1985ASAJ...78.1395M. doi:10.1121/1.392911.
J. Hald. "Patch near-field acoustical holography using a new statistically optimal method". Inter-noise 2003, Jeju International Convention Center, Seogwipo, Korea, 2003-08-25–2003-08-28.
External links
Acoustic holography
Introduction to Acoustic Holography
Hellenica World - Scientific Library
Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License