ART

Μια κυκλική ομάδα είναι η ομάδα της οποίας όλα τα στοιχεία προκύπτουν από δυνάμεις ενός συγκεκριμένου στοιχείου a. Με πολλαπλασιαστικό συμβολισμό, τα στοιχεία της ομάδας θα είναι:

..., a−3, a−2, a−1, a0 = e, a, a2, a3, ...,

όπου a2 σημαίνει aa, και a−3 σημαίνει a−1a−1a−1=(aaa)−1 κτλ. Ένα τέτοιο στοιχείο a ονομάζεται γεννήτορας ή αρχικό στοιχείο της ομάδας. Στην πρόσθεση, ένα στοιχείο είναι γεννήτορας όταν όλα τα υπόλοιπα στοιχεία μπορούν να γραφτούν ως

..., −aa, −a, 0, a, a+a, ...

Στις ομάδες Z/nZ που αναφέρθηκαν παραπάνω, το στοιχείο 1 είναι γεννήτορας, οπότε αυτές οι ομάδες είναι κυκλικές. Πράγματι, κάθε στοιχείο εκφράζεται ως ένα άθροισμα του οποίου όλοι οι όροι ισούνται με 1. Κάθε κυκλική ομάδα με n στοιχεία είναι ισόμορφη αυτής της ομάδας. Ένα δεύτερο παράδειγμα για τις κυκλικές ομάδες είναι η ομάδα των n-οστών μιγαδικών ριζών της μονάδας, που προκύπτουν από τους μιγαδικούς αριθμούς z που ικανοποιούν την εξίσωση zn = 1. Αυτοί οι αριθμοί μπορούν να παρασταθούν ως οι κορυφές ενός κανονικού n-γώνου, όπως φαίνεται στα δεξιά με μπλε χρώμα για n = 6. Η πράξη της ομάδας είναι ο πολλαπλασιασμός των μιγαδικών αριθμών. Στην εικόνα, πολλαπλασιάζοντας με το z αντιστοιχεί σε μια αριστερόστροφη περιστροφή κατά 60°. Χρησιμοποιώντας τη θεωρία σωμάτων, μπορούμε να αποδείξουμε ότι η ομάδα Fp× είναι κυκλική: για παράδειγμα, αν p = 5, το 3 είναι γεννήτορας, δεδομένου ότι 31 = 3, 32 = 9 ≡ 4, 33 ≡ 2, and 34 ≡ 1.

Ορισμένες κυκλικές ομάδες έχουν άπειρο αριθμό στοιχείων. Σε αυτές τις ομάδες, για κάθε μη μηδενικό στοιχείο a, όλες οι δυνάμεις του a είναι διαφορετικές. Παρά την ονομασία "κυκλική ομάδα", οι δυνάμεις των στοιχείων δεν δημιουργούν κύκλο. Μια άπειρη κυκλική ομάδα είναι ισόμορφη με την (Z, +), την ομάδα των ακέραιων υπό την πράξη της πρόσθεσης που αναφέρθηκε παραπάνω. Όπως και αυτές οι δύο είναι αβελιανές, έτσι και όλες οι κυκλικές ομάδες είναι αβελιανές.

Εγκυκλοπαίδεια Μαθηματικών

Κόσμος

Αλφαβητικός κατάλογος

Hellenica World - Scientific Library

Από τη ελληνική Βικιπαίδεια http://el.wikipedia.org . Όλα τα κείμενα είναι διαθέσιμα υπό την GNU Free Documentation License