.
Κάθε ακέραιος αριθμός μπορεί να είναι είτε άρτιος είτε περιττός σύμφωνα με τον παρακάτω κανόνα: αν είναι ακέραιο πολλαπλάσιο του δύο τότε είναι άρτιος, διαφορετικά είναι περιττός. Για παράδειγμα οι αριθμοί −2, 0, 8 είναι άρτιοι ενώ οι −3, 1, 21 είναι περιττοί.
Οι άρτιοι καλούνται επίσης ζυγοί και οι περιττοί καλούνται μονοί και συχνά εννοούμε μόνο τους φυσικούς αριθμούς (δεν περιλαμβάνονται αρνητικοί).
Κάθε άρτιος αριθμός μπορεί να γραφτεί στη μορφή: 2ν όπου ν∈ \( \mathbb{Z} \)
Κάθε περιττός αριθμός μπορεί να γραφτεί στη μορφή: 2ν+1 όπου ν∈ \( \mathbb{Z} \)
Ιδιότητες
Πολλαπλασιασμός
άρτιος * άρτιος = άρτιος
άρτιος * περιττός = άρτιος
περιττός * περιττός = περιττός
Διαίρεση
Το αποτέλεσμα της διαίρεσης δύο ακεραίων αριθμών δεν είναι αναγκαστικά ακέραιος αριθμός. Για παράδειγμα το πηλίκο της διαίρεσης του 1 με το 2 είναι το κλάσμα 1/2 που δεν είναι ούτε άρτιος ούτε περιττός αφού άρτιοι ή περιττοί μπορούν να είναι μόνο οι ακέραιοι. Αν όμως το πηλίκο της διαίρεσης δύο ακεραίων είναι ακέραιος τότε αυτός είναι άρτιος αν και μόνο αν ο διαιρετέος έχει περισσότερους παράγοντες του δύο από τον διαιρέτη.
Γράφοντας τις σημειώσεις στη σειρά από πάνω ως κάτω, προκύπτει ο αριθμός σε δυαδική μορφή. Δηλαδή, 11012 = 1310. Με τον ίδιο τρόπο μπορούμε να μετατρέψουμε έναν δεκαδικό αριθμό σε οποιοδήποτε σύστημα, χρησιμοποιώντας κάθε φορά τις δυνάμεις της βάσης του εκάστοτε συστήματος αρίθμησης (οκταδικό, δεκαεξαδικό κτλ.).
Hellenica World - Scientific Library
Από τη ελληνική Βικιπαίδεια http://el.wikipedia.org . Όλα τα κείμενα είναι διαθέσιμα υπό την GNU Free Documentation License