.
Αρμονική πρόοδος είναι η ακολουθία, στην οποία κανένας όρος δεν ισούται με το μηδέν και για δύο διαδοχικούς όρους της \alpha_{\nu}, \alpha_{\nu+1}}\alpha_{\nu}, \alpha_{\nu+1}} ισχύει ότι \frac{1}{\alpha_{\nu+1}}-\frac{1}{\alpha_{\nu}}=\omega , όπου ω μία σταθερή ποσότητα. Αντίστροφα, αποδεικνύεται ότι, αν για οποιουσδήποτε δύο διαδοχικούς όρους μιας ακολουθίας ισχύει η παραπάνω σχέση τότε αυτή η ακολουθία είναι αρμονική πρόοδος. Έτσι, όπως πολλές ακολουθίες, έχει δύο τύπους:
Γενικός τύπος: \alpha_\nu=\frac{1}{\frac{1}{\alpha_1}+(\nu-1)\omega}
Αναδρομικός τύπος: \alpha_{\nu+1}=\frac{1}{\omega+\frac{1}{\alpha_{\nu}}}
Ιδιότητες της προόδου
Η γραφική παράσταση της αρμονικής προόδου είναι διαδοχικά σημεία ενός κλάδου δίκλαδης υπερβολής με κέντρο συμμετρίας την αρχή των αξόνων, η οποία όμως έχει μετατοπιστεί οριζόντια κατά 1-\frac{1}{\omega a_1}
Ο αρμονικός μέσος όρος δύο αριθμών α,γ είναι ο β, αν και μόνο αν οι όροι α, β, γ είναι διαδοχικοί όροι αρμονικής προόδου.
Αν ω=0 και τότε η αρμονική πρόοδος είναι άπειροι ίσοι μεταξύ τους όροι με τον {\alpha_1 .
Hellenica World - Scientific Library
Από τη ελληνική Βικιπαίδεια http://el.wikipedia.org . Όλα τα κείμενα είναι διαθέσιμα υπό την GNU Free Documentation License