ART

In mathematics, the Verschiebung or Verschiebung operator V is a homomorphism between affine commutative group schemes over a field of nonzero characteristic p. For finite group schemes it is the Cartier dual of the Frobenius homomorphism. It was introduced by Witt (1937) as the shift operator on Witt vectors taking (a0, a1, a2, ...) to (0, a0, a1, ...). ("Verschiebung" is German for "shift", but the term "Verschiebung" is often used for this operator even in other languages.)

The Verschiebung operator V and the Frobenius operator F are related by FV = VF = [p], where [p] is the pth power homomorphism of an abelian group scheme.

Examples

See also

Dieudonne module

References
Demazure, Michel (1972), Lectures on p-divisible groups, Lecture Notes in Mathematics, 302, Berlin, New York: Springer-Verlag, doi:10.1007/BFb0060741, ISBN 978-3-540-06092-5, MR 0344261
Witt, Ernst (1937), "Zyklische Körper und Algebren der Characteristik p vom Grad pn. Struktur diskret bewerteter perfekter Körper mit vollkommenem Restklassenkörper der Charakteristik pn", Journal für die Reine und Angewandte Mathematik (in German), 176: 126–140, doi:10.1515/crll.1937.176.126

Undergraduate Texts in Mathematics

Graduate Texts in Mathematics

Graduate Studies in Mathematics

Mathematics Encyclopedia

World

Index

Hellenica World - Scientific Library

Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License