ART

In mathematics, the value distribution theory of holomorphic functions is a division of mathematical analysis. It tries to get quantitative measures of the number of times a function f(z) assumes a value a, as z grows in size, refining the Picard theorem on behaviour close to an essential singularity. The theory exists for analytic functions (and meromorphic functions) of one complex variable z, or of several complex variables.

In the case of one variable the term Nevanlinna theory, after Rolf Nevanlinna, is also common. The now-classical theory received renewed interest, when Paul Vojta suggested some analogies with the problem of integral solutions to Diophantine equations. These turned out to involve some close parallels, and to lead to fresh points of view on the Mordell conjecture and related questions.

Undergraduate Texts in Mathematics

Graduate Texts in Mathematics

Graduate Studies in Mathematics

Mathematics Encyclopedia

World

Index

Hellenica World - Scientific Library

Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License