ART

In five-dimensional geometry, a truncated 5-simplex is a convex uniform 5-polytope, being a truncation of the regular 5-simplex.

There are unique 2 degrees of truncation. Vertices of the truncation 5-simplex are located as pairs on the edge of the 5-simplex. Vertices of the bitruncation 5-simplex are located on the triangular faces of the 5-simplex.

Truncated 5-simplex

Truncated 5-simplex
Type Uniform 5-polytope
Schläfli symbol t{3,3,3,3}
Coxeter-Dynkin diagram CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
CDel branch 11.pngCDel 3b.pngCDel nodeb.pngCDel 3b.pngCDel nodeb.pngCDel 3b.pngCDel nodeb.png
4-faces 12 6 {3,3,3}Schlegel wireframe 5-cell.png
6 t{3,3,3}Schlegel half-solid rectified 5-cell.png
Cells 45 30 {3,3}Tetrahedron.png
15 t{3,3}Truncated tetrahedron.png
Faces 80 60 {3}
20 {6}
Edges 75
Vertices 30
Vertex figure Truncated 5-simplex verf.png
( )v{3,3}
Coxeter group A5 [3,3,3,3], order 720
Properties convex

The truncated 5-simplex has 30 vertices, 75 edges, 80 triangular faces, 45 cells (15 tetrahedral, and 30 truncated tetrahedron), and 12 4-faces (6 5-cell and 6 truncated 5-cells).
Alternate names

Truncated hexateron (Acronym: tix) (Jonathan Bowers)[1]

Coordinates

The vertices of the truncated 5-simplex can be most simply constructed on a hyperplane in 6-space as permutations of (0,0,0,0,1,2) or of (0,1,2,2,2,2). These coordinates come from facets of the truncated 6-orthoplex and bitruncated 6-cube respectively.
Images

orthographic projections
Ak
Coxeter plane
A5 A4
Graph 5-simplex t01.svg 5-simplex t01 A4.svg
Dihedral symmetry [6] [5]
Ak
Coxeter plane
A3 A2
Graph 5-simplex t01 A3.svg 5-simplex t01 A2.svg
Dihedral symmetry [4] [3]

Bitruncated 5-simplex

bitruncated 5-simplex
Type Uniform 5-polytope
Schläfli symbol 2t{3,3,3,3}
Coxeter-Dynkin diagram CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
CDel branch 11.pngCDel 3ab.pngCDel nodes.pngCDel 3b.pngCDel nodeb.png
4-faces 12 6 2t{3,3,3}4-simplex t12.svg
6 t{3,3,3}4-simplex t01.svg
Cells 60 45 {3,3}3-simplex t0.svg
15 t{3,3}3-simplex t01.svg
Faces 140 80 {3}2-simplex t0.svg
60 {6}2-simplex t01.svg
Edges 150
Vertices 60
Vertex figure Bitruncated 5-simplex verf.png
{ }v{3}
Coxeter group A5 [3,3,3,3], order 720
Properties convex

Alternate names

Bitruncated hexateron (Acronym: bittix) (Jonathan Bowers)[2]

Coordinates

The vertices of the bitruncated 5-simplex can be most simply constructed on a hyperplane in 6-space as permutations of (0,0,0,1,2,2) or of (0,0,1,2,2,2). These represent positive orthant facets of the bitruncated 6-orthoplex, and the tritruncated 6-cube respectively.
Images

orthographic projections
Ak
Coxeter plane
A5 A4
Graph 5-simplex t12.svg 5-simplex t12 A4.svg
Dihedral symmetry [6] [5]
Ak
Coxeter plane
A3 A2
Graph 5-simplex t12 A3.svg 5-simplex t12 A2.svg
Dihedral symmetry [4] [3]

Related uniform 5-polytopes

The truncated 5-simplex is one of 19 uniform 5-polytopes based on the [3,3,3,3] Coxeter group, all shown here in A5 Coxeter plane orthographic projections. (Vertices are colored by projection overlap order, red, orange, yellow, green, cyan, blue, purple having progressively more vertices)
A5 polytopes
Notes

Klitizing, (x3x3o3o3o - tix)

Klitizing, (o3x3x3o3o - bittix)

References

H.S.M. Coxeter:
H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
(Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
(Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
(Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
Norman Johnson Uniform Polytopes, Manuscript (1991)
N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
Klitzing, Richard. "5D uniform polytopes (polytera)". x3x3o3o3o - tix, o3x3x3o3o - bittix

External links

Glossary for hyperspace, George Olshevsky.
Polytopes of Various Dimensions, Jonathan Bowers
Truncated uniform polytera (tix), Jonathan Bowers
Multi-dimensional Glossary

Fundamental convex regular and uniform polytopes in dimensions 2–10
Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron Octahedron • Cube Demicube Dodecahedron • Icosahedron
Uniform 4-polytope 5-cell 16-cell • Tesseract Demitesseract 24-cell 120-cell • 600-cell
Uniform 5-polytope 5-simplex 5-orthoplex • 5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex • 6-cube 6-demicube 122 • 221
Uniform 7-polytope 7-simplex 7-orthoplex • 7-cube 7-demicube 132 • 231 • 321
Uniform 8-polytope 8-simplex 8-orthoplex • 8-cube 8-demicube 142 • 241 • 421
Uniform 9-polytope 9-simplex 9-orthoplex • 9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex • 10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplex • n-cube n-demicube 1k2 • 2k1 • k21 n-pentagonal polytope
Topics: Polytope families • Regular polytope • List of regular polytopes and compounds

Undergraduate Texts in Mathematics

Graduate Texts in Mathematics

Graduate Studies in Mathematics

Mathematics Encyclopedia

World

Index

Hellenica World - Scientific Library

Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License