ART

In geometry, a truncated 120-cell is a uniform 4-polytope formed as the truncation of the regular 120-cell.

There are three trunctions, including a bitruncation, and a tritruncation, which creates the truncated 600-cell.

Truncated 120-cell

Truncated 120-cell
Schlegel half-solid truncated 120-cell.png
Schlegel diagram
(tetrahedron cells visible)
Type Uniform 4-polytope
Uniform index 36
Schläfli symbol t0,1{5,3,3}
or t{5,3,3}
Coxeter diagrams CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
Cells 600 3.3.3 Tetrahedron.png
120 3.10.10 Truncated dodecahedron.png
Faces 2400 triangles
720 decagons
Edges 4800
Vertices 2400
Vertex figure Truncated 120-cell verf.png
triangular pyramid
Dual Tetrakis 600-cell
Symmetry group H4, [3,3,5], order 14400
Properties convex

Net

The truncated 120-cell or truncated hecatonicosachoron is a uniform 4-polytope, constructed by a uniform truncation of the regular 120-cell 4-polytope.

It is made of 120 truncated dodecahedral and 600 tetrahedral cells. It has 3120 faces: 2400 being triangles and 720 being decagons. There are 4800 edges of two types: 3600 shared by three truncated dodecahedra and 1200 are shared by two truncated dodecahedra and one tetrahedron. Each vertex has 3 truncated dodecahedra and one tetrahedron around it. Its vertex figure is an equilateral triangular pyramid.
Alternate names

Truncated 120-cell (Norman W. Johnson)
Tuncated hecatonicosachoron / Truncated dodecacontachoron / Truncated polydodecahedron
Truncated-icosahedral hexacosihecatonicosachoron (Acronym thi) (George Olshevsky, and Jonathan Bowers)[1]

Images

Orthographic projections by Coxeter planes
H4 - F4
120-cell t01 H4.svg
[30]
120-cell t01 p20.svg
[20]
120-cell t01 F4.svg
[12]
H3 A2 A3
120-cell t01 H3.svg
[10]
120-cell t01 A2.svg
[6]
120-cell t01 A3.svg
[4]

Truncated 120-cell net.png
net Truncated 120cell.png
Central part of stereographic projection
(centered on truncated dodecahedron) Stereographic truncated 120-cell.png
Stereographic projection

120-cell t0 H3.svg
120-cell
CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
120-cell t01 H3.svg
Truncated 120-cell
CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
120-cell t1 H3.svg
Rectified 120-cell
CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
120-cell t12 H3.png
Bitruncated 120-cell
Bitruncated 600-cell
CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
600-cell t0 H3.svg
600-cell
CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
600-cell t01 H3.svg
Truncated 600-cell
CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
600-cell t1 H3.svg
Rectified 600-cell
CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
Orthogonal projections in H3 Coxeter plane

Bitruncated 120-cell

Bitruncated 120-cell
Bitruncated 120-cell schlegel halfsolid.png
Schlegel diagram, centered on truncated icosahedron, truncated tetrahedral cells visible
Type Uniform 4-polytope
Uniform index 39
Coxeter diagram CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
Schläfli symbol t1,2{5,3,3}
or 2t{5,3,3}
Cells 720:
120 5.6.6 Truncated icosahedron.png
600 3.6.6 Truncated tetrahedron.png
Faces 4320:
1200{3}+720{5}+
2400{6}
Edges 7200
Vertices 3600
Vertex figure Bitruncated 120-cell verf.png
digonal disphenoid
Symmetry group H4, [3,3,5], order 14400
Properties convex, vertex-transitive


Net

The bitruncated 120-cell or hexacosihecatonicosachoron is a uniform 4-polytope. It has 720 cells: 120 truncated icosahedra, and 600 truncated tetrahedra. Its vertex figure is a digonal disphenoid, with two truncated icosahedra and two truncated tetrahedra around it.

Alternate names

Bitruncated 120-cell / Bitruncated 600-cell (Norman W. Johnson)
Bitruncated hecatonicosachoron / Bitruncated hexacosichoron / Bitruncated polydodecahedron / Bitruncated polytetrahedron
Truncated-icosahedral hexacosihecatonicosachoron (Acronym Xhi) (George Olshevsky, and Jonathan Bowers)[2]

Images
Bitruncated cosmotetron stereographic close-up.png
Stereographic projection (Close up)

Orthographic projections by Coxeter planes
H4 - F4
600-cell t01 H4.svg
[30]
600-cell t01 p20.svg
[20]
600-cell t01 F4.svg
[12]
H3 A2 / B3 / D4 A3 / B2
600-cell t01 H3.svg
[10]
600-cell t01 A2.svg
[6]
600-cell t01.svg
[4]

Truncated 600-cell

Truncated 600-cell
Schlegel half-solid truncated 600-cell.png
Schlegel diagram
(icosahedral cells visible)
Type Uniform 4-polytope
Uniform index 41
Schläfli symbol t0,1{3,3,5}
or t{3,3,5}
Coxeter diagram CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Cells 720:
120 Icosahedron.png 3.3.3.3.3
600 Truncated tetrahedron.png 3.6.6
Faces 2400{3}+1200{6}
Edges 4320
Vertices 1440
Vertex figure Truncated 600-cell verf.png
pentagonal pyramid
Dual Dodecakis 120-cell
Symmetry group H4, [3,3,5], order 14400
Properties convex

Net

The truncated 600-cell or truncated hexacosichoron is a uniform 4-polytope. It is derived from the 600-cell by truncation. It has 720 cells: 120 icosahedra and 600 truncated tetrahedra. Its vertex figure is a pentagonal pyramid, with one icosahedron on the base, and 5 truncated tetrahedra around the sides.

Alternate names

Truncated 600-cell (Norman W. Johnson)
Truncated hexacosichoron (Acronym tex) (George Olshevsky, and Jonathan Bowers)[3]
Truncated tetraplex (Conway)

Structure

The truncated 600-cell consists of 600 truncated tetrahedra and 120 icosahedra. The truncated tetrahedral cells are joined to each other via their hexagonal faces, and to the icosahedral cells via their triangular faces. Each icosahedron is surrounded by 20 truncated tetrahedra.

Images

Stereographic projection or Schlegel diagrams
Stereographic truncated 600-cell.png
Centered on icosahedron
Truncated 600 cell.png
Centered on truncated tetrahedron
Truncated 600 cell central.png
Central part
and some of 120 red icosahedra.
Truncated 600-cell net.png
Net
Orthographic projections by Coxeter planes
H4 - F4
600-cell t01 H4.svg
[30]
600-cell t01 p20.svg
[20]
600-cell t01 F4.svg
[12]
H3 A2 / B3 / D4 A3 / B2
600-cell t01 H3.svg
[10]
600-cell t01 A2.svg
[6]
600-cell t01.svg
[4]
3D Parallel projection
Truncated 600-cell parallel-icosahedron-first-01.png Parallel projection into 3 dimensions, centered on an icosahedron. Nearest icosahedron to the 4D viewpoint rendered in red, remaining icosahedra in yellow. Truncated tetrahedra in transparent green.

Related polytopes

H4 family polytopes
120-cell rectified
120-cell
truncated
120-cell
cantellated
120-cell
runcinated
120-cell
cantitruncated
120-cell
runcitruncated
120-cell
omnitruncated
120-cell
CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
{5,3,3} r{5,3,3} t{5,3,3} rr{5,3,3} t0,3{5,3,3} tr{5,3,3} t0,1,3{5,3,3} t0,1,2,3{5,3,3}
120-cell t0 H3.svg 120-cell t1 H3.svg 120-cell t01 H3.svg 120-cell t02 H3.png 120-cell t03 H3.png 120-cell t012 H3.png 120-cell t013 H3.png 120-cell t0123 H3.png
600-cell t0 H3.svg 600-cell t1 H3.svg 600-cell t01 H3.svg 600-cell t02 H3.svg 120-cell t12 H3.png 120-cell t123 H3.png 120-cell t023 H3.png
600-cell rectified
600-cell
truncated
600-cell
cantellated
600-cell
bitruncated
600-cell
cantitruncated
600-cell
runcitruncated
600-cell
omnitruncated
600-cell
CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
{3,3,5} r{3,3,5} t{3,3,5} rr{3,3,5} 2t{3,3,5} tr{3,3,5} t0,1,3{3,3,5} t0,1,2,3{3,3,5}

Notes

Klitizing, (o3o3x5x - thi)
Klitizing, (o3x3x5o - xhi)

Klitizing, (x3x3o5o - tex)

References

Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6
(Paper 22) H.S.M. Coxeter, Regular and Semi-Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
(Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
(Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
J.H. Conway and M.J.T. Guy: Four-Dimensional Archimedean Polytopes, Proceedings of the Colloquium on Convexity at Copenhagen, page 38 und 39, 1965
N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966
Four-dimensional Archimedean Polytopes (German), Marco Möller, 2004 PhD dissertation [1] m58 m59 m53
Convex uniform polychora based on the hecatonicosachoron (120-cell) and hexacosichoron (600-cell) - Model 36, 39, 41, George Olshevsky.
Klitzing, Richard. "4D uniform polytopes (polychora)". o3o3x5x - thi, o3x3x5o - xhi, x3x3o5o - tex
Four-Dimensional Polytope Projection Barn Raisings (A Zometool construction of the truncated 120-cell), George W. Hart

External links

H4 uniform polytopes with coordinates: t{3,3,5} t{5,3,3} 2t{5,3,3}

Fundamental convex regular and uniform polytopes in dimensions 2–10
Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron Octahedron • Cube Demicube Dodecahedron • Icosahedron
Uniform 4-polytope 5-cell 16-cell • Tesseract Demitesseract 24-cell 120-cell • 600-cell
Uniform 5-polytope 5-simplex 5-orthoplex • 5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex • 6-cube 6-demicube 122 • 221
Uniform 7-polytope 7-simplex 7-orthoplex • 7-cube 7-demicube 132 • 231 • 321
Uniform 8-polytope 8-simplex 8-orthoplex • 8-cube 8-demicube 142 • 241 • 421
Uniform 9-polytope 9-simplex 9-orthoplex • 9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex • 10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplex • n-cube n-demicube 1k2 • 2k1 • k21 n-pentagonal polytope
Topics: Polytope families • Regular polytope • List of regular polytopes and compounds

Undergraduate Texts in Mathematics

Graduate Texts in Mathematics

Graduate Studies in Mathematics

Mathematics Encyclopedia

World

Index

Hellenica World - Scientific Library

Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License